Mots-clés : anharmonic oscillations.
@article{VUU_2021_31_1_a6,
author = {V. V. Voytik and N. G. Migranov},
title = {Small nutation of a symmetic gyroscope: two viewpoints},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {89--101},
year = {2021},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/}
}
TY - JOUR AU - V. V. Voytik AU - N. G. Migranov TI - Small nutation of a symmetic gyroscope: two viewpoints JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 89 EP - 101 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/ LA - ru ID - VUU_2021_31_1_a6 ER -
V. V. Voytik; N. G. Migranov. Small nutation of a symmetic gyroscope: two viewpoints. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/
[1] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter, 2019 | DOI | MR | MR | Zbl
[2] L. Veljovic, D. Milosavljević, G. Bogdanović, A. Radaković, M. Lazić, “Nonlinear dynamics of heavy gyro rotors”, Mobility and Vehicle Mechanics, 38:3 (2012), 27–40 http://www.mvm.fink.rs/Journal/Archive/2012/2012V38N3.html
[3] L. Veljovic, “History and present of gyroscope models and vector rotators”, Scie ntific Technical Review, 60:3–4 (2010), 101–111 http://www.vti.mod.gov.rs/ntp/rad2010/34-10/12/e12.htm
[4] K. R. Hedrih, L. Veljovic, “Vector rotators of rigid body dynamics with coupled rotations around ax es without intersection”, Mathematical Problems in Engineering, 2011 (2011), 1–26 | DOI | MR
[5] V. I. Gorelov, P. E. Golosov, O. L. Karelova, N. P. Tretyakov, “The challenge of climate change”, Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems, Proc. of the All-Russian Conference, Peoples' Friendship University of Russia (RUDN University), M., 2019, 414
[6] R. J. Nagem, G. Sandri, “On special forms of motion of the heavy symmetric top, particularly pseudoregular precession, and on the stability of motion”, The Theory of the Top, v. II, Birkhauser, Boston, 2010, 279–391 | DOI | MR
[7] N. I. Amel'kin, Solid dynamics, Moscow Institute of Physics and Technology, M., 2010
[8] H. Goldstein, Ch. Poole, J. Safko, Classical mechanics, Addison Wesley, San Francisco, 2002 | MR
[9] F. L. Chernousko, L. D. Akulenko, D. D. Leshchenko, Evolution of motions of a rigid body about its center of mass, Springer, Cham, 2017 | DOI | MR | Zbl
[10] N. N. Polyakhov, S. A. Zegzhda, M. P. Yushkov, Theoretical mechanics, Yurait, M., 2015
[11] V. G. Vil'ke, Mechanics of systems of material points and solids, Fizmatlit, M., 2013
[12] V. G. Vil'ke, Theoretical mechanics, Yurait, M., 2020
[13] V. G. Bykov, P. E. Tovstik, “On the stability of the pseudo-regular precession of a flexible rotor with limited excitation”, Seventh Polyakhovsky Readings, Abstracts of International Scientific Conference on Mechanics (Saint Petersburg, 2015), 196 (in Russian)
[14] L. D. Akulenko, D. D. Leshchenko, T. A. Kozachenko, “Evolution of rotation of the Lagrange top, close to pseudoregular precession”, Vestnik Zaporozhskogo Natsional'nogo Universiteta, Fiziko-Matematicheskie Nauki, 2015, no. 2, 10–19 (in Russian)
[15] T. A. Kozachenko, “Dynamics of rotations of a rigid body similar to pseudoregular precession”, Vestnik Odesskoi Gosudarstvennoi Akademii Stroitel'stva i Arkhitektury, 2017, no. 68, 39–44 (in Russian)
[16] M. A. Munitsyna, “On transients in the dynamics of an ellipsoid of revolution on a plane with friction”, Mechanics of Solids, 54:4 (2019), 545–550 | DOI | DOI
[17] S. Bhattacharjee, “Rotating frame analysis of rigid body dynamics in space phasor variables”, American Journal of Physics, 81:7 (2013), 518–526 | DOI
[18] L. D. Landau, E. Lifshitz, Mechanics, Butterworth Heinemann, Oxford, 2002 | MR | MR