Small nutation of a symmetic gyroscope: two viewpoints
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 89-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the small nutation of an axisymmetric gyroscope in the field of gravity. The expansion of the known solution of the nutation equation as a function of time in powers of the amplitude is obtained. In this case, the frequencies of third order Raman oscillations are both the tripled frequency and the frequency coinciding with the initial one. A formula is found for the nutation amplitude as a function of the integrals of the gyroscope motion. The frequency of zero nutation is also calculated. Another way to obtain the decomposition is to use the results of the general theory of free one-dimensional oscillations. This method is based on the ability to represent the gyro nutation as the movement of a material point of unit mass in a field that cubically-quadratically depends on the coordinate. In this case the only frequency of the third-order Raman oscillation is a triple of the original frequency. Thus, both methods give the same result only for oscillations no higher than second order. In the third approximation, the existing theory of oscillations is insufficient.
Keywords: unbalanced gyroscope, pseudo-regular rotation, small nutation
Mots-clés : anharmonic oscillations.
@article{VUU_2021_31_1_a6,
     author = {V. V. Voytik and N. G. Migranov},
     title = {Small nutation of a symmetic gyroscope: two viewpoints},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {89--101},
     year = {2021},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/}
}
TY  - JOUR
AU  - V. V. Voytik
AU  - N. G. Migranov
TI  - Small nutation of a symmetic gyroscope: two viewpoints
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 89
EP  - 101
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/
LA  - ru
ID  - VUU_2021_31_1_a6
ER  - 
%0 Journal Article
%A V. V. Voytik
%A N. G. Migranov
%T Small nutation of a symmetic gyroscope: two viewpoints
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 89-101
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/
%G ru
%F VUU_2021_31_1_a6
V. V. Voytik; N. G. Migranov. Small nutation of a symmetic gyroscope: two viewpoints. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a6/

[1] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter, 2019 | DOI | MR | MR | Zbl

[2] L. Veljovic, D. Milosavljević, G. Bogdanović, A. Radaković, M. Lazić, “Nonlinear dynamics of heavy gyro rotors”, Mobility and Vehicle Mechanics, 38:3 (2012), 27–40 http://www.mvm.fink.rs/Journal/Archive/2012/2012V38N3.html

[3] L. Veljovic, “History and present of gyroscope models and vector rotators”, Scie ntific Technical Review, 60:3–4 (2010), 101–111 http://www.vti.mod.gov.rs/ntp/rad2010/34-10/12/e12.htm

[4] K. R. Hedrih, L. Veljovic, “Vector rotators of rigid body dynamics with coupled rotations around ax es without intersection”, Mathematical Problems in Engineering, 2011 (2011), 1–26 | DOI | MR

[5] V. I. Gorelov, P. E. Golosov, O. L. Karelova, N. P. Tretyakov, “The challenge of climate change”, Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems, Proc. of the All-Russian Conference, Peoples' Friendship University of Russia (RUDN University), M., 2019, 414

[6] R. J. Nagem, G. Sandri, “On special forms of motion of the heavy symmetric top, particularly pseudoregular precession, and on the stability of motion”, The Theory of the Top, v. II, Birkhauser, Boston, 2010, 279–391 | DOI | MR

[7] N. I. Amel'kin, Solid dynamics, Moscow Institute of Physics and Technology, M., 2010

[8] H. Goldstein, Ch. Poole, J. Safko, Classical mechanics, Addison Wesley, San Francisco, 2002 | MR

[9] F. L. Chernousko, L. D. Akulenko, D. D. Leshchenko, Evolution of motions of a rigid body about its center of mass, Springer, Cham, 2017 | DOI | MR | Zbl

[10] N. N. Polyakhov, S. A. Zegzhda, M. P. Yushkov, Theoretical mechanics, Yurait, M., 2015

[11] V. G. Vil'ke, Mechanics of systems of material points and solids, Fizmatlit, M., 2013

[12] V. G. Vil'ke, Theoretical mechanics, Yurait, M., 2020

[13] V. G. Bykov, P. E. Tovstik, “On the stability of the pseudo-regular precession of a flexible rotor with limited excitation”, Seventh Polyakhovsky Readings, Abstracts of International Scientific Conference on Mechanics (Saint Petersburg, 2015), 196 (in Russian)

[14] L. D. Akulenko, D. D. Leshchenko, T. A. Kozachenko, “Evolution of rotation of the Lagrange top, close to pseudoregular precession”, Vestnik Zaporozhskogo Natsional'nogo Universiteta, Fiziko-Matematicheskie Nauki, 2015, no. 2, 10–19 (in Russian)

[15] T. A. Kozachenko, “Dynamics of rotations of a rigid body similar to pseudoregular precession”, Vestnik Odesskoi Gosudarstvennoi Akademii Stroitel'stva i Arkhitektury, 2017, no. 68, 39–44 (in Russian)

[16] M. A. Munitsyna, “On transients in the dynamics of an ellipsoid of revolution on a plane with friction”, Mechanics of Solids, 54:4 (2019), 545–550 | DOI | DOI

[17] S. Bhattacharjee, “Rotating frame analysis of rigid body dynamics in space phasor variables”, American Journal of Physics, 81:7 (2013), 518–526 | DOI

[18] L. D. Landau, E. Lifshitz, Mechanics, Butterworth Heinemann, Oxford, 2002 | MR | MR