Mots-clés : oscillation
@article{VUU_2021_31_1_a4,
author = {A. Kh. Stash},
title = {The absence of residual property for strong exponents of oscillation of linear systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {59--69},
year = {2021},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a4/}
}
TY - JOUR AU - A. Kh. Stash TI - The absence of residual property for strong exponents of oscillation of linear systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 59 EP - 69 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a4/ LA - ru ID - VUU_2021_31_1_a4 ER -
%0 Journal Article %A A. Kh. Stash %T The absence of residual property for strong exponents of oscillation of linear systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 59-69 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a4/ %G ru %F VUU_2021_31_1_a4
A. Kh. Stash. The absence of residual property for strong exponents of oscillation of linear systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a4/
[1] I. N. Sergeev, “Definition and properties of characteristic frequencies of a linear equation”, Journal of Mathematical Sciences, 135:1 (2006), 2764–2793 | DOI | MR | Zbl
[2] I. N. Sergeev, “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sbornik: Mathematics, 204:1 (2013), 114–132 | DOI | DOI | MR | Zbl
[3] I. N. Sergeev, “Oscillation and wandering characteristics of solutions of a linear differential system”, Izvestiya: Mathematics, 76:1 (2012), 139–162 | DOI | DOI | MR | Zbl
[4] I. N. Sergeev, “The complete set of relations between the oscillation, rotation and wandering indicators of solutions of differential systems”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 171–183 (in Russian) | Zbl
[5] I. N. Sergeev, “Oscillation, rotation, and wandering exponents of solutions of differential systems”, Mathematical Notes, 99:5 (2016), 729–746 | DOI | DOI | MR | Zbl
[6] I. N. Sergeev, “Lyapunov characteristics of oscillation, rotation, and wandering of solutions of differential systems”, Journal of Mathematical Sciences, 234:4 (2018), 497–522 | DOI | MR | Zbl
[7] I. N. Sergeev, “Oscillation, rotation, and wandering of solutions to linear differential systems”, Journal of Mathematical Sciences, 230:5 (2018), 770–774 | DOI | MR | Zbl
[8] I. N. Sergeev, “Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane”, Moscow University Mathematics Bulletin, 74:1 (2019), 20–24 | DOI | MR | Zbl
[9] E. A. Barabanov, A. S. Voidelevich, “Remark on the theory of Sergeev frequencies of zeros, signs and roots for solution of linear differential equation: I”, Differential Equations, 52:10 (2016), 1249–1267 | DOI | DOI | MR | Zbl
[10] E. A. Barabanov, A. S. Voidelevich, “Remark on the theory of Sergeev frequencies of zeros, signs and roots for solution of linear differential equation: II”, Differential Equations, 52:12 (2016), 1523–1538 | DOI | DOI | MR | Zbl
[11] V. V. Bykov, “On the Baire classification of Sergeev frequencies of zeros and roots of solution of linear differential equation”, Differential Equations, 52:4 (2016), 413–420 | DOI | DOI | MR | Zbl
[12] E. A. Barabanov, A. S. Voidelevich, “Spectra of the upper Sergeev frequencies of zeros and signs of linear differential equation”, Doklady NAN Belarusi, 60:1 (2016), 24–31 (in Russian) | MR | Zbl
[13] A. S. Voidelevich, “On spectra of upper Sergeev frequencies of linear differential equation”, Journal of the Belarusian State University, Mathematics and Informatics, 2019, no. 1, 28–32 (in Russian) | MR | Zbl
[14] A. S. Voidelevich, “Existence of the infinite every where discontinuous upper spectra of characteristic frequencies of zeros and signs of linear differential equation”, Izvestiya NAN Belarusi, Ser. Fiziko-Matematicheskikh Nauk, 2015, no. 3, 17–23 (in Russian)
[15] N. N. Sergeev, “A contribution to the theory of Lyapunov exponents for linear systems of differential equations”, Journal of Soviet Mathematics, 33:6 (1986), 1245–1292 | DOI | Zbl | Zbl
[16] D. S. Burlakov, S. V. Tsoii, “Coincidence of complete and vector frequencies of solutions of a linear autonomous system”, Journal of Mathematical Sciences, 210:2 (2015), 155–167 | DOI | MR | Zbl
[17] A. Kh. Stash, “Properties of exponents of oscillation of linear autonomous differential system solutions”, Vestnik Udmurtskogo Universiteta, Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 558–568 (in Russian) | DOI | MR
[18] A. Kh. Stash, “On some properties of total and vector hyper frequencies of two-dimensional differential system solutions”, Vestnik Adygeiskogo Gosudarstvennogo Universiteta. Ser. 4: Estestvenno-Matematicheskie i Tekhnicheskie Nauki, 2017, no. 2 (201), 31–34 (in Russian) | MR
[19] A. Kh. Stash, “On some properties of hyper frequencies of solution of linear multidimensional differential systems”, Vestnik Adygeiskogo Gosudarstvennogo Universiteta. Ser. 4: Estestvenno-Matematicheskie i Tekhnicheskie Nauki, 2018, no. 3 (226), 20–24 (in Russian)
[20] A. Kh. Stash, “Some properties of oscillation indicators of solutions to a two-dimensional system”, Moscow University Mathematics Bulletin, 74:5 (2019), 202–204 | DOI | MR | Zbl