Mots-clés : quasi-periodic perturbations
@article{VUU_2021_31_1_a2,
author = {O. S. Kostromina},
title = {On two-frequency quasi-periodic perturbations of systems close to two-dimensional {Hamiltonian} ones with a double limit cycle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {35--49},
year = {2021},
volume = {31},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a2/}
}
TY - JOUR AU - O. S. Kostromina TI - On two-frequency quasi-periodic perturbations of systems close to two-dimensional Hamiltonian ones with a double limit cycle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 35 EP - 49 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a2/ LA - en ID - VUU_2021_31_1_a2 ER -
%0 Journal Article %A O. S. Kostromina %T On two-frequency quasi-periodic perturbations of systems close to two-dimensional Hamiltonian ones with a double limit cycle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 35-49 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a2/ %G en %F VUU_2021_31_1_a2
O. S. Kostromina. On two-frequency quasi-periodic perturbations of systems close to two-dimensional Hamiltonian ones with a double limit cycle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a2/
[1] A. D. Morozov, T. N. Dragunov, “On quasi-periodic perturbations of Duffing equation”, Discontinuity, Nonlinearity, and Complexity, 5:4 (2016), 377–386 | DOI
[2] A. P. Kuznetsov, S. P. Kuznetsov, Yu. V. Sedova, “Pendulum system with an infinite number of equilibrium states and quasiperiodic dynamics”, Russian Journal of Nonlinear Dynamics, 12:2 (2016), 223–234 (in Russian) | DOI | MR | Zbl
[3] A. D. Morozov, K. E. Morozov, “Quasiperiodic perturbations of two-dimensional Hamiltonian systems”, Differential Equations, 53:12 (2017), 1557–1566 | DOI | MR | Zbl
[4] N. V. Stankevich, A. P. Kuznetsov, E. S. Popova, E. P. Seleznev, “Experimental diagnostics of multifrequency quasiperiodic oscillations”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 200–210 | DOI | Zbl
[5] T. Q. Truong, T. Tsubone, M. Sekikawa, N. Inaba, “Complicated quasiperiodic oscillations and chaos from driven piecewise-constant circuit: chenciner bubbles do not necessarily occur via simple phaselocking”, Physica D: Nonlinear Phenomena, 341 (2017), 1–9 | DOI | MR | Zbl
[6] T. Jiang, Z. Yang, Z. Jing, “Bifurcations and chaos in the Duffing equation with parametric excitation and single external forcing”, International Journal of Bifurcation and Chaos, 27:8 (2017), 1750125, 1–31 | DOI | MR
[7] A. D. Morozov, K. E. Morozov, “On synchronization of quasiperiodic oscillations”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 367–376 | DOI | MR | Zbl
[8] A. D. Morozov, K. E. Morozov, “Global dynamics of systems close to Hamiltonian ones under nonconservative quasi-periodic perturbation”, Russian Journal of Nonlinear Dynamics, 15:2 (2019), 187–198 | DOI | MR | Zbl
[9] A. P. Kuznetsov, S. P. Kuznetsov, N. A. Shchegoleva, N. V. Stankevich, “Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena”, Physica D: Nonlinear Phenomena, 398 (2019), 1–12 | DOI | MR | Zbl
[10] Y. Guan, V. Gupta, M. Wan, L. K. B. Li, “Forced synchronization of quasiperiodic oscillations in a thermoacoustic system”, Journal of Fluid Mechanics, 879 (2019), 390–421 | DOI | MR | Zbl
[11] A. D. Morozov, K. E. Morozov, “On quasi-periodic parametric perturbations of Hamiltonian systems”, Russian Journal of Nonlinear Dynamics, 16:2 (2020), 369–378 | DOI | MR | Zbl
[12] M. Kolos, M. Shahzadi, Z. Stuchlik, “Quasi-periodic oscillations around Kerr-MOG black holes”, The European Physical Journal, 80:133 (2020), 1–12 | DOI
[13] M. Sato, H. Hyodo, T. Biwa, R. Delage, “Synchronization of thermoacoustic quasiperiodic oscillation by periodic external force”, Chaos, 30:6 (2020), 063130 | DOI | MR
[14] I. I. Blekhman, Synchronization in science and technology, ASME Press, New York, 1988
[15] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear science, Cambridge University Press, England, Cambridge, 2001 | DOI | MR
[16] A. P. Kuznetsov, I. R. Sataev, N. V. Stankevich, L. V. Turukina, Physics of quasiperiodic oscillations, Publishing center “Science”, Saratov, 2013
[17] V. Anishchenko, S. Nikolaev, J. Kurths, “Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions”, Phys. Rev. E, 73 (2006), 056202 | DOI | MR
[18] A. P. Kuznetsov, S. P. Kuznetsov, N. V. Stankevich, “A simple autonomous quasiperiodic self-oscillator”, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 1676–1681 | DOI
[19] A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, N. V. Stankevich, “Generators of quasiperiodic oscillations with three-dimensional phase space”, The European Physical Journal Special Topics, 222 (2013), 2391–2398 | DOI
[20] M. S. Berger, Y. Y. Chen, “Forced quasiperiodic and almost periodic oscillations of nonlinear Duffing equations”, Nonlinear Analysis: Theory, Methods and Applications, 19:3 (1992), 249–257 | DOI | MR | Zbl
[21] B. Liu, J. You, “Quasiperiodic solutions of Duffing's Equations”, Nonlinear Analysis: Theory, Methods and Applications, 33:6 (1998), 645–655 | DOI | MR | Zbl
[22] A. D. Grischenko, D. M. Vavriv, “Dynamics of pendulum with a quasiperiodic perturbation”, Technical Physics, 42:10 (1997), 1115–1120 | DOI
[23] R. Q. Wang, J. Deng, Z. J. Jing, “Chaos control in duffing system”, Chaos, Solitons and Fractals, 27:1 (2006), 249–257 | DOI | MR | Zbl
[24] Z. Jing, Z. Yang, T. Jiang, “Complex dynamics in Duffing-van der Pol equation”, Chaos, Solitons and Fractals, 27:3 (2006), 722–747 | DOI | MR | Zbl
[25] Z. J. Jing, J. C. Huang, J. Deng, “Complex dynamics in three-well Duffing system with two external forcings”, Chaos, Solitons and Fractals, 33:3 (2007), 795–812 | DOI | MR | Zbl
[26] V. Ravichandran, V. Chinnathambi, S. Rajasekar, “Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force”, Physica A: Statistical Mechanics and its Applications, 376 (2007), 223–236 | DOI | MR
[27] J. K. Hale, Oscillations in nonlinear systems, Dover Publications, Mineola, New York, 2015
[28] A. D. Morozov, Quasi-conservative systems: Cycles, resonances and chaos, World Scientific Series, Singapore, 1998 | DOI | MR | Zbl
[29] A. D. Morozov, Resonance, cycles and chaos in quasi-conservative systems, Regular and Chaotic Dynamics, Institute of Computer Science, Izhevsk, 2005 (In Russian) | MR
[30] A. D. Morozov, E. A. Mamedov, “On a double cycle, resonances”, Regular and Chaotic Dynamics, 17:1 (2012), 63–71 | DOI | MR | Zbl
[31] O. S. Kostromina, “On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 228–244 | DOI | MR | Zbl
[32] V. K. Mel'nikov, “On the stability of a center for time-periodic perturbations”, Trudy Moskovskogo Matematicheskogo Obshchestva, 12, 1963, 3–52 (in Russian)
[33] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, products, Academic Press, 2007 | MR | Zbl
[34] A. D. Morozov, T. N. Dragunov, S. A. Boykova, O. V. Malysheva, Invariant sets for windows, World Scientific, 1999 | DOI | MR | Zbl
[35] A. D. Morozov, T. N. Dragunov, Visualization and analysis of invariant sets of dynamical systems, Institute of Computer Science, M.–Izhevsk, 2003 (In Russian) | MR
[36] A. A. Andronov, A. A. Witt, “Zur theorie des mitnehmens von van der Pol”, Archiv fur Elektrotechnik, 24:1 (1930), 99–110 | DOI
[37] A. D. Morozov, L. P. Shil'nikov, “On nonconservative periodic systems close to two-dimensional Hamiltonian”, Journal of Applied Mathematics and Mechanics, 47:3 (1983), 327–334 | DOI | MR