@article{VUU_2021_31_1_a10,
author = {A. D. Obukhov and M. N. Krasnyanskiy},
title = {Neural network method of data processing and transmission in adaptive information systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {149--164},
year = {2021},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a10/}
}
TY - JOUR AU - A. D. Obukhov AU - M. N. Krasnyanskiy TI - Neural network method of data processing and transmission in adaptive information systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 149 EP - 164 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a10/ LA - ru ID - VUU_2021_31_1_a10 ER -
%0 Journal Article %A A. D. Obukhov %A M. N. Krasnyanskiy %T Neural network method of data processing and transmission in adaptive information systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 149-164 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a10/ %G ru %F VUU_2021_31_1_a10
A. D. Obukhov; M. N. Krasnyanskiy. Neural network method of data processing and transmission in adaptive information systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 149-164. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a10/
[1] A. Keller, “Challenges and directions in service management automation”, Journal of Network and Systems Management, 25:4 (2017), 884–901 | DOI
[2] M. van Steen, A. S. Tanenbaum, “A brief introduction to distributed systems”, Computing, 98:10 (2016), 967–1009 | DOI | MR | Zbl
[3] C. Zhang, X. Wang, F. Li, M. Huang, “NNIRSS: neural network-based intelligent routing scheme for SDN”, Neural Computing and Applications, 31:10 (2019), 6189–6205 | DOI
[4] L. Genga, M. Alizadeh, D. Potena, C. Diamantini, N. Zannone, “Discovering anomalous frequent patterns from partially ordered event logs”, Journal of Intelligent Information Systems, 51:2 (2018), 257–300 | DOI
[5] A. P. Eremeev, A. A. Kozhuhov, Golenkov V. V, N. A. Gulyakina, “On the implementation of machine learning tools in real-time intelligent systems”, Programmnye Produkty i Sistemy, 2018, no. 2, 239–245 (in Russian) | DOI
[6] S. Dong, R. Li, “Traffic identification method based on multiple probabilistic neural network model”, Neural Computing and Applications, 31:2 (2019), 473–487 | DOI
[7] M. Kraus, S. Feuerriegel, “Decision support from financial disclosures with deep neural networks and transfer learning”, Decision Support Systems, 104 (2017), 38–48 | DOI
[8] Y. C. Weng, S. L. Hsieh, “Design and implementation of a web-based medical drawing management system”, Journal of Intelligent Information Systems, 49:3 (2017), 391–405 | DOI
[9] J. Zhang, G. Ding, Y. Zou, S. Qin, J. Fu, “Review of job shop scheduling research and its new perspectives under Industry 4.0”, Journal of Intelligent Manufacturing, 30:4 (2019), 1809–1830 | DOI
[10] J. Shokeen, C. Rana, “Social recommender systems: techniques, domains, metrics, datasets and future scope”, Journal of Intelligent Information Systems, 54:3 (2020), 633–667 | DOI
[11] T. Wang, “Intelligent employment rate prediction model based on a neural computing framework and human-computer interaction platform”, Neural Computing and Applications, 32:21 (2020), 16413–16426 | DOI
[12] P. Dourish, “Algorithms and their others: Algorithmic culture in context”, Big Data and Society, 3:2 (2016), 1–11 | DOI
[13] A. Zamula, S. Kavun, “Complex systems modeling with intelligent control elements”, International Journal of Modeling, Simulation, and Scientific Computing, 8:1 (2017), 1750009, 19 pp. | DOI
[14] H. W. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning work so well?, Journal of Statistical Physics, 168:6 (2017), 1223–1247 | DOI | MR | Zbl
[15] L. Zhou, S. Pan, J. Wang, A. V. Vasilakos, “Machine learning on big data: Opportunities and challenges”, Neurocomputing, 237 (2017), 350–361 | DOI | MR
[16] M. Mirzaey, M. B. Jamshidi, Y. Hojatpour, “Applications of artificial neural networks in information system of management accounting”, International Journal of Mechatronics, Electrical and Computer Technology, 7:25 (2017), 3523–3530
[17] A. D. Obukhov, M. N. Krasnyanskiy, “Neural network architecture of information systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:3 (2019), 438–455 (in Russian) | DOI | MR
[18] G. V. Cybenko, “Approximation by superpositions of a sigmoidal function”, Mathematics of Control, Signals and Systems, 2:4 (1989), 303–314 | DOI | MR | Zbl
[19] R. Hecht-Nielsen, “Replicator neural networks for universal optimal source coding”, Science, 269:5232 (1995), 1860–1863 | DOI
[20] A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, Doklady Akademii Nauk SSSR, 114:5 (1957), 953–956 (in Russian) | Zbl
[21] M. A. Kuznetsov, V. O. Surkov, “Analysis of complexity metrics of a software code for obfuscating transformations of an executable code”, IOP Conference Series: Materials Science and Engineering, 155 (2016), 012008 | DOI
[22] V. Antinyan, M. Staron, A. Sandberg, “Evaluating code complexity triggers, use of complexity measures and the influence of code complexity on maintenance time”, Empirical Software Engineering, 22:6 (2017), 3057–3087 | DOI
[23] V. Ya. Tsvetkov, A. V. Buravtsev, “Metrics of a complex determinate system”, Ontology of Designing, 7:3 (2017), 334–346 (in Russian) | DOI
[24] D. Savchenko, T. Hynninen, O. Taipal, “Code quality measurement: Case study”, 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO, IEEE, 2018, 1455–1459 | DOI
[25] I. V. Evdokimov, I. S. Baikalov, A. I. Zudenkov, T. V. Radionov, A. M. Tsiryul'nikova, “Considering the question of the metrics of the labority of development of mobile application”, Fundamental Research, 2017, no. 9-1, 54–58 (in Russian)
[26] I. A. Lesik, “Forecasting stock price growth using feedforward neural networks”, Software and Systems, 2015, no. 2, 70–74 (in Russian) | DOI
[27] H. Jin, Q. Song, X. Hu, “Auto-keras: An efficient neural architecture search system”, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Association for Computing Machinery, 2019, 1946–1956 | DOI
[28] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, M. Urban, M. Burkart, M. Dippel, M. Lindauer, F. Hutter, “Towards automatically-tuned deep neural networks”, Automated Machine Learning, 2019, 135–149 | DOI
[29] X. Gong, S. Chang, Y. Jiang, Z. Wang, “Autogan: Neural architecture search for generative adversarial networks”, International Conference on Computer Vision, ICCV, IEEE, 2019, 3223–3233 | DOI
[30] W. Pan, C. Chai, “Measuring software stability based on complex networks in software”, Cluster Computing, 22:2 (2019), 2589–2598 | DOI