Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 19-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies qualitatively new equations of moisture transfer, which generalize the Aller and Aller-Lykov equations. The generalization contributes to revealing in the original equations the specific features of the studied massifs, their structure, physical properties, processes occurring in them through the introduction of the notion of the rates of change of the fractal dimension. We have obtained solutions to the constant coefficient difference equations as a system arising when using the method of lines for the equations with a Riemann-Liouville time fractional derivative with boundary conditions of the first kind. A priori estimates are obtained that imply convergence of the obtained solutions to systems of ordinary differential equations with variable fractional coefficients. Numerical tests have been carried out to confirm theoretical results of the study.
Keywords: generalized Aller moisture transfer equation, fractional order derivative, method of lines, a priori estimate.
Mots-clés : Aller-Lykov equation
@article{VUU_2021_31_1_a1,
     author = {M. A. Kerefov and S.Kh. Gekkieva},
     title = {Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {19--34},
     year = {2021},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a1/}
}
TY  - JOUR
AU  - M. A. Kerefov
AU  - S.Kh. Gekkieva
TI  - Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 19
EP  - 34
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a1/
LA  - ru
ID  - VUU_2021_31_1_a1
ER  - 
%0 Journal Article
%A M. A. Kerefov
%A S.Kh. Gekkieva
%T Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 19-34
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a1/
%G ru
%F VUU_2021_31_1_a1
M. A. Kerefov; S.Kh. Gekkieva. Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 19-34. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a1/

[1] A. F. Chudnovskii, Thermophysics of soils, Nauka, M., 1976

[2] A. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003

[3] V. Ya. Kulik, “Investigation of soil moisture movement from the point of view of invariance with respect to continuous transformation groups”, Investigation of energy and substance exchange processes in the “soil-plant-air system”, Nauka, L., 1972, 180–187

[4] V. A. Yangarber, “The mixed problem for a modified moisture-transfer equation”, Journal of Applied Mechanics and Technical Physics, 8:1 (1967), 62–64 | DOI

[5] B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation $u_t = u_{xx}- u_{xtx}$ on a strip”, Archive for Rational Mechanics and Analysis, 19:2 (1965), 100–116 | DOI | MR | Zbl

[6] A. M. Nakhushev, “An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water”, Differentsial'nye Uravneniya, 18:1 (1982), 72–81 (in Russian) | MR | Zbl

[7] V. A. Vodakhova, “A boundary value problem with A. M. Nakhushev's nonlocal condition for a pseudoparabolic equation of moisture transfer”, Differentsial'nye Uravneniya, 18:2 (1982), 280–285 (in Russian) | MR | Zbl

[8] A. P. Soldatov, M. Kh. Shkhanukov, “Boundary value problems with A. A. Samarskii general nonlocal condition for higher-order pseudoparabolic equations”, Doklady Mathematics, 36:3 (1988), 507–511 | MR | Zbl

[9] Zh. T. Karsanova, F. M. Nakhusheva, “On a nonlocal boundary value problem for a third-order pseudoparabolic equation”, Vladikavkazskii Matematicheskii Zhurnal, 4:2 (2002), 31–37 (in Russian) | MR | Zbl

[10] A. I. Kozhanov, “On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation”, Differential Equations, 40:6 (2004), 815–826 | DOI | MR | Zbl

[11] K. U. Khubiev, “On mathematical models of the Aller equation”, Vestnik KRAUNTs. Fiz. Mat. Nauki, 1:4 (2016), 56–65 (in Russian) | MR

[12] M. Kh. Beshtokov, “A numerical method for solving one nonlocal boundary value problem for a thirdorder hyperbolic equation”, Computational Mathematics and Mathematical Physics, 54:9 (2014), 1441–1458 | DOI | DOI | MR | Zbl

[13] M. Kh. Beshtokov, “Differential and difference boundary value problem for loaded third-order pseudoparabolic differential equations and difference methods for their numerical solution”, Computational Mathematics and Mathematical Physics, 57:12 (2017), 1973–1993 | DOI | DOI | MR | Zbl

[14] Kh. G. Umarov, “Solvability of the Cauchy problem for the Aller equation in space of bounded continuous functions”, Vladikavkazskii Matematicheskii Zhurnal, 16:4 (2013), 65–75 (in Russian)

[15] R. Kh. Makaova, “A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz. Mat. Nauki, 21:4 (2017), 651–664 (in Russian) | DOI | Zbl

[16] Z. K. Fayazova, “Boundary control for a pseudo-parabolic equation”, Mathematical Notes of NEFU, 25:2 (2018), 40–47 (in Russian) | DOI | Zbl

[17] M. A. Kerefov, Boundary value problems for a modified moisture transfer equation with a time-fractional derivative, Cand. Sci. (Phys. Math.) Dissertation, Nal'chik, 2000, 75 pp. (In Russian)

[18] Ch. Wu, “Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative”, Applied Numerical Mathematics, 59:10 (2009), 2571–2583 | DOI | MR | Zbl

[19] Ch. M. Chen, F. Liu, I. Turner, V. Anh, “Numerical methods with fourth-order spatial accuracy for variable order nonlinear Stokes' first problem for a heated generalized second grade fluid”, Computers and Mathematics with Applications, 62:3 (2011), 971–986 | DOI | MR | Zbl

[20] F. A. Karova, “Numerical solution for fractional Haller equation”, Vestnik KRAUNTs, Fiz. Mat. Nauki, no. 4(24), 166–177 (in Russian) | DOI | MR

[21] M. A. Kerefov, S. Kh. Gekkieva, “A nonlocal boundary value problem for the generalized equation of moisture transfer”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Ser. Fizika. Matematika, 2017, no. 2, 106–112 (in Russian) | Zbl

[22] M. Kh. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann-Liouville fractional derivative”, Differential Equations, 54:6 (2018), 758–774 | DOI | DOI | MR | Zbl

[23] M. Kh. Beshtokov, “Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 158–175 (in Russian) | DOI | MR

[24] I. S. Berezin, N. P. Zhidkov, Calculation methods, v. 2, GIFML, M., 1962 | MR

[25] A. A. Samarskii, Theory of difference schemes, Nauka, M., 1989 | MR

[26] O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, M., 1973

[27] A. V. Pskhu, Partial differential equations of fractional order, Nauka, M., 2005

[28] S. Kh. Gekkieva, Boundary value problems for loaded parabolic equations with fractional time derivative, Cand. Sci. (Phys. Math.) Dissertation, Nal'chik, 2003, 75 pp. (In Russian)

[29] S. M. Arkhestova, M. Kh. Shkhanukov-Lafishev, “Difference schemes for moisture transport equation of Aller-Lykov with non-local condition”, Izvestiya Kabardino-Balkarskogo Nauchnogo Tsentra Rossiiskoi Akademii Nauk, 2012, no. 3(47), 7–16 (in Russian)

[30] M. M. Lafisheva, M. A. Kerefov, R. V. Dyshekova, “Difference schemes for the Aller-Lykov moisture transfer equations with a nonlocal condition”, Vladikavkazskii Matematicheskii Zhurnal, 19:1 (2017), 50–58 (in Russian) | DOI | MR | Zbl

[31] Gekkieva S. Kh., Kerefov M. A., “Boundary value problems for the generalized moisture transfer equation”, Vestnik KRAUNTs. Fiz.-Mat. Nauki, 2018, no. 1 (21), 21–31 (in Russian) | DOI | MR | Zbl

[32] Gekkieva S. Kh., “Nonlocal boundary-value problem for the generalized Aller-Lykov moisture transport equation”, Vestnik KRAUNTs. Fiz.-Mat. Nauki, 2018, no. 4 (24), 19–28 (in Russian) | DOI | MR | Zbl

[33] Kerefov M. A., Nakhusheva F. M., Gekkieva S. Kh., “Boundary value problem for the Aller-Lykov moisture transport generalized equation with concentrated heat capacity”, Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 24:3 (2018), 23–29 (in Russian) | DOI | MR | Zbl

[34] Gekkieva S. Kh., Kerefov M. A., “Dirichlet boundary value problem for Aller-Lykov moisture transfer equation with fractional derivative in time”, Ufa Mathematical Journal, 11:2 (2019), 71–81 | DOI | MR | Zbl

[35] Kerefov M. A., Gekkieva S. Kh., “Second boundary-value problem for the generalized Aller-Lykov equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 23:4 (2019), 607–621 (in Russian) | DOI | Zbl

[36] Parovik R. I., “Calculation specific functions of Mittag-Leffler in the computer mathematics Maple”, Vestnik KRAUNTs. Fiz.-Mat. Nauki, 2012, no. 2 (5), 51–61 (in Russian) | DOI | Zbl