On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 3-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
Keywords: internal Dirichlet and Neumann problems, Helmholtz equation, arbitrary polygon, barycentric method, Galerkin method, barycentric coordinates
Mots-clés : convergence estimation.
@article{VUU_2021_31_1_a0,
     author = {A. S. Il'inskii and I. S. Polyanskii and D. E. Stepanov},
     title = {On the convergence of the barycentric method in solving internal {Dirichlet} and {Neumann} problems in $ \mathbb{R}^2$ for the {Helmholtz} equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--18},
     year = {2021},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a0/}
}
TY  - JOUR
AU  - A. S. Il'inskii
AU  - I. S. Polyanskii
AU  - D. E. Stepanov
TI  - On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 3
EP  - 18
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a0/
LA  - ru
ID  - VUU_2021_31_1_a0
ER  - 
%0 Journal Article
%A A. S. Il'inskii
%A I. S. Polyanskii
%A D. E. Stepanov
%T On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 3-18
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a0/
%G ru
%F VUU_2021_31_1_a0
A. S. Il'inskii; I. S. Polyanskii; D. E. Stepanov. On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $ \mathbb{R}^2$ for the Helmholtz equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a0/

[1] N. S. Arkhipov, I. S. Polyanskij, D. E. Stepanov, “The barycentric method for the field analysis in a regular waveguide with arbitrary cross-section”, Antenny, 2015, no. 1(212), 32–40 (in Russian)

[2] I. S. Polyanskii, “Vector barycentric method in computational electrodynamics”, SPIIRAS Proceedings, 2017, no. 2(51), 206–222 (in Russian) | DOI

[3] I. S. Polyanskii, Barycentric method in computational electrodynamics, Russian Federation Security Guard Service Federal Academy, Orel, 2017

[4] I. S. Polyanskii, “About application the barycentric method in the numerical solution of internal problem of electrodynamics”, Fizika Volnovykh Protsessov i Radiotekhnicheskie Sistemy, 21:3 (2018), 36–42 (in Russian) | MR

[5] E. L. Wachspress, A rational finite element basis, Academic Press, New York, 1975 | MR | Zbl

[6] Ch. Den, Q. Chang, K. Hormann, “Iterative coordinates”, Computer Aided Geometric Design, 79 (2020), 101861 | DOI | MR | Zbl

[7] M. S. Floater, “Mean value coordinates”, Computer Aided Geometric Design, 20:1 (2003), 19–27 | DOI | MR | Zbl

[8] X. Y. Li, Sh. M. Hu, “Poisson coordinates”, IEEE Transactions on Visualization and Computer Graphics, 19:2 (2013), 344–352 | DOI

[9] A. G. Belyaev, P.-A. Fayolle, “Transfinite barycentric coordinates”, Generalized barycentric coordinates in computer graphics and computational mechanics, CRC Press, Boca Raton, 2017, 43–62 | DOI | MR

[10] I. S. Polyanskii, “Barycentric coordinates for the multidimensional Poisson approximation of the scalar potential inside an arbitrary region. Part 1”, Vestnik Saratovskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 78:1 (2015), 30–36 (in Russian) | MR

[11] I. S. Polyanskii, “Barycentric coordinates for the multidimensional Poisson approximation of the scalar potential inside an arbitrary region. Part 2”, Vestnik Saratovskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 78:1 (2015), 36–42 (in Russian) | MR

[12] I. S. Polyanskii, “Barycentric coordinates of Poisson-Riemann”, SPIIRAS Proceedings, 2016, no. 6(49), 32–48 (in Russian) | DOI

[13] A. S. Il'inskii, I. S. Polyanskii, “An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 366–383 | DOI | DOI | MR | Zbl

[14] J. C. Nedelec, “Mixed finite elements in $R^3$”, Numerische Mathematik, 35 (1980), 315–341 | DOI | MR | Zbl

[15] M. M. Karchevskii, M. F. Pavlova, Equations of mathematical physics. Additional chapters, Lan, Saint-Petersburg, 2016

[16] L. V. Kantorovich, V. I. Krylov, Approximate methods of higher analysis, Gostekhizdat, M., 1950 | MR

[17] A. S. Ilinsky, Yu. G. Smirnov, Electromagnetic wave diffraction by conducting screens, De Gruyter, 1998 | DOI

[18] C. A. J. Fletcher, Computational Galerkin methods, Springer, 1984 | MR | Zbl

[19] P. I. Romanovskii, Fourier Series. Field theory. Analytical and special functions. Laplace transform, Nauka, M., 1980

[20] A. I. Kostrikin, Yu. I. Manin, Linear algebra and geometry, Nauka, M., 1986 | MR

[21] S. G. Mikhlin, Errors of computational processes, Tbilisi University, Tbilisi, 1983

[22] R. A. Nicolaides, “On a class of finite elements generated by Lagrange interpolation”, SIAM Journal on Numerical Analysis, 9:3 (1972), 435–445 | DOI | MR | Zbl

[23] I. S. Berezin, N. P. Zhidkov, Methods of computation, v. 1, GIFML, M., 1962 | MR

[24] M. I. Grigor'ev, V. N. Malozemov, A. N. Sergeev, “Bernstein polynomials and composite Bezier curves”, Computational Mathematics and Mathematical Physics, 46:11 (2006), 1872–1881 | DOI | MR

[25] I. K. Daugavet, The theory of approximate methods. Linear equations, BHV-Petersburg, Saint-Petersburg, 2006

[26] H. Triebel, Interpolation theory. Function spaces. Differential operators, Veb Deutscher Verlag Der Wissenschaften, Berlin, 1978 | MR

[27] M. Yu. Medvedik, Yu. G. Smirnov, “Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao-Wilton-Glisson method”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 114–122 | DOI | DOI | MR | Zbl

[28] Yu. G. Smirnov, “Convergence of the Galerkin methods for equations with elliptic operators on subspaces and solving the electric field equation”, Computational Mathematics and Mathematical Physics, 47:1 (2007), 126–135 | DOI | MR | Zbl

[29] M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Approximate solution of operator equations, Nauka, M., 1969 | MR

[30] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, McGraw-Hill, 2005 | MR

[31] N. S. Arkhipov, I. S. Polyanskii, D. E. Stepanov, “Representation of reflecting surfaces of the antenna system in the tasks of analysis and synthesis of reflector antennas by the methods of physical optics”, Telekommunikatsii, 2014, no. 7, 15–21 (in Russian)

[32] Yu. V. Vasilevskii, A. A. Danilov, K. N. Lipnikov, V. N. Chugunov, Automated technologies for constructing unstructured computational grids, Fizmatlit, M., 2016

[33] M. A. Taylor, B. A. Wingate, L. P. Bos, Several new quadrature formulas for polynomial integration in the triangle, Report No SAND2005-0034J