On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 672-695 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the motion of a near-autonomous, time-periodic two-degree-of- freedom Hamiltonian system in the vicinity of trivial equilibrium. It is assumed that the system depends on three parameters, one of which is small, and when it is zero, the system is autonomous. Suppose that in the autonomous case for a set of two other parameters, both frequencies of small linear oscillations of the system in the vicinity of the equilibrium are equal to zero, and the rank of the coefficient matrix of the linearized equations of perturbed motion is three, two, or one. We study the structure of the regions of stability and instability of the trivial equilibrium of the system in the vicinity of the resonant point of a three-dimensional parameter space, as well as the existence, number and stability (in a linear approximation) of periodic motions of the system that are analytic in integer or fractional powers of the small parameter. As an application, periodic motions of a dynamically symmetric satellite (solid) with respect to the center of mass are obtained in the vicinity of its stationary rotation (cylindrical precession) in a weakly elliptical orbit in the case of two zero frequencies under study, and their instability is proved.
Keywords: Hamiltonian system, normalization, zero frequencies, stability, dynamically symmetric satellite, cylindrical precession.
@article{VUU_2020_30_4_a9,
     author = {O. V. Kholostova},
     title = {On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {672--695},
     year = {2020},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a9/}
}
TY  - JOUR
AU  - O. V. Kholostova
TI  - On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 672
EP  - 695
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a9/
LA  - ru
ID  - VUU_2020_30_4_a9
ER  - 
%0 Journal Article
%A O. V. Kholostova
%T On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 672-695
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a9/
%G ru
%F VUU_2020_30_4_a9
O. V. Kholostova. On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 672-695. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a9/

[1] Markeev A. P., “Parametric resonance and nonlinear oscillations of heavy solid near its flat rotations”, Izvestiya Rossiiskoi Akademii Nauk. Mekhanika Tverdogo Tela, 1995, no. 5, 34–44 (in Russian)

[2] Kholostova O. V., “Parametric resonance in the problem on satellite nonlinear oscillations in elliptic orbit”, Kosmicheskie Issledovaniya, 3:3 (1996), 312–316 (in Russian) | MR

[3] Kholostova O. V., “The periodic motions of a non-autonomous Hamiltonian system with two degrees of freedom at parametric resonance of the fundamental type”, J. Appl. Math. Mech., 66:4 (2002), 529–538 | DOI | MR | MR | Zbl

[4] Markeev A. P., “On a multiple resonance in linear Hamiltonian systems”, Doklady Phyics, 50:5 (2005), 278–282 | DOI | MR

[5] Markeev A. P., “On one special case of parametric resonance in problems of celestial mechanics”, Astron. Lett., 31:5 (2005), 350–356 | DOI

[6] Markeev A. P., “Multiple resonance in one problem of the stability of the motion of a satellite relative to the center of mass”, Astron. Lett., 31:9 (2005), 627–633 | DOI

[7] Markeyev A. P., “Multiple parametric resonance in Hamilton systems”, J. Appl. Math. Mech., 70:2 (2006), 176–194 | DOI | MR | Zbl

[8] Markeev A. P., Linear Hamiltonian systems and some problems on stability of motion of a satellite about its center of mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009

[9] Kholostova O. V., “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelineinaya Dinamika, 13:4 (2017), 477–504 (in Russian) | DOI | MR | Zbl

[10] Kholostova O. V., “On periodic motions of a nearly autonomous Hamiltonian system in the occurrence of double parametric resonance”, Mechanics of Solids, 54:2 (2019), 211–233 | DOI | DOI | MR | MR | Zbl

[11] Kholostova O. V., “On the motions of one near-autonomous Hamiltonian system at a 1:1:1 resonance”, Regular and Chaotic Dynamics, 24:3 (2019), 235–265 | DOI | MR | Zbl

[12] Sokol'skii A. G., “On stability of self-contained Hamiltonian system with two degrees of freedom in the case of zero frequencies”, J. Appl. Math. Mech., 45:3 (1981), 321–327 | DOI | MR

[13] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka, M., 1978

[14] Malkin I. G., Some problems in the theory of nonlinear oscillations, URSS, M., 2004

[15] Markeev A. P., “On rotational motion of a dynamically symmetrical satellite in an elliptic orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (in Russian)

[16] Beletskii V. V., Satellite's motion about the center of mass in a gravitational field, Moscow State University, M., 1975