@article{VUU_2020_30_4_a8,
author = {A. P. Markeev},
title = {On normal coordinates in the vicinity of the {Lagrangian} libration points of the restricted elliptic three-body problem},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {657--671},
year = {2020},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a8/}
}
TY - JOUR AU - A. P. Markeev TI - On normal coordinates in the vicinity of the Lagrangian libration points of the restricted elliptic three-body problem JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 657 EP - 671 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a8/ LA - ru ID - VUU_2020_30_4_a8 ER -
%0 Journal Article %A A. P. Markeev %T On normal coordinates in the vicinity of the Lagrangian libration points of the restricted elliptic three-body problem %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 657-671 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a8/ %G ru %F VUU_2020_30_4_a8
A. P. Markeev. On normal coordinates in the vicinity of the Lagrangian libration points of the restricted elliptic three-body problem. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 657-671. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a8/
[1] Duboshin G. N., Celestial mechanics. Analytical and qualitative methods, Nauka, M., 1978
[2] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978
[3] Euler L., “De motu rectilineo trium corporum se mutuo attrahentum”, Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, 11 (1767), 144–151
[4] Lagrange J. L., “Essai sur le problème des trois corps”, Oeuvres de Lagrange, 6 (1873), 229–324 | MR
[5] Érdi B., Forgács-Dajka E., Nagy I., Rajnai R., “A parametric study of stability and resonances around $L_4$ in the elliptic restricted three-body problem”, Celestial Mechanics and Dynamical Astronomy, 104:1–2 (2009), 145–158 | DOI | MR | Zbl
[6] Yumagulov M. G., Belikova O. N., “Bifurcations of periodic solutions near triangular libration points in the three-body problem”, Russian Mathematics, 54:6 (2010), 69–74 | DOI | MR | Zbl
[7] Goździewski K., Konacki M., Trojan pairs in the HD128311 and HD 82943 planetary systems?, Astrophysical Journal, 647:1 (2006), 573–586 | DOI
[8] Lhotka Ch., Efthymiopoulos C., Dvorak R., “Nekhoroshev stability at $L_4$ or $L_5$ in the elliptic-restricted three-body problem — application to Trojan asteroids”, Monthly Notices of the Royal Astronomical Society, 384:3 (2008), 1165–1177 | DOI
[9] Minglibayev M.Zh., Zhumabek T. M., Mayemerova G. M., “Investigation of the restricted three-body problem in a special non-inertial central coordinate system”, Bulletin of the Karaganda University-Mathematics, 87:3 (2017), 95–108 (in Russian) | DOI
[10] Salazar F., Winter O. C., Macau E. E.N., Masdemont Soler J., Gómez Muntané G., “Natural configuration for formation flying around triangular libration points for the elliptic and the bicircular problem in the earth-moon system”, The 65th International Astronautical Congress (Toronto, Canada, 2014), 1–14 http://hdl.handle.net/2117/27848
[11] Isanbaeva N. R., “On the plotting of the stability domain border of triangular libration points for plane bounded elliptical three-body problem”, Bulletin of Bashkir University, 22:1 (2017), 5–9 (in Russian)
[12] Simo C., “Periodic orbits of the planar $N$-body problem with equal masses and all bodies on the same path”, The Restless Universe, IOP Publishing Ltd, 2001 | DOI
[13] Whipple A. L., Szebehely V., “The restricted problem of $n+\nu$ bodies”, Celestial mechanics, 32:2 (1984), 137–144 | DOI | MR | Zbl
[14] Budzko D. A., Prokopenya A. N., “On the stability of equilibrium positions in the circular restricted four-body problem”, Computer Algebra in Scientific Computing, Springer, Berlin–Heidelberg, 2011, 88–100 | DOI | MR | Zbl
[15] Grebenikov E. A., Mathematical problems of homographic dynamics, RUDN, M., 2011
[16] Kunitsyn A. L., Tureshbaev A. T., “Stability of triangular libration points of the photogravitational three-body problem”, Pis'ma v Astronomicheskii Zhurnal, 11:2 (1985), 145–148 (in Russian) | MR
[17] Luk'yanov L. G., Kochetkova A.Yu., “On the stability of Lagrangian libration points in a restricted elliptic photogravitational three-body problem”, Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 1996, no. 5, 71–76 (in Russian)
[18] Zimovshikov A. S., Tkhai V. N., “Stability diagrams for a heterogeneous ensemble of particles at the collinear libration points of the photogravitational three-body problem”, Journal of Applied Mathematics and Mechanics, 74:2 (2010), 158–163 | DOI | MR | Zbl
[19] Kononenko A., “Libration points of the Earth–Moon system”, Aviatsiya i Kosmonavtika, 1968, no. 5, 71–73 (in Russian)
[20] Averkiev N. F., Vas'kov S. A., Salov V. V., “Ballistic construction of communication systems and passive radiolocation of lunar surface”, Izvestiya Vysshikh Uchebnykh Zavedenii. Priborostroenie, 51:12 (2008), 66–72 (in Russian)
[21] Brykov A., “Station at the libration point”, Aviatsiya i Kosmonavtika, 1987, no. 7, 42–43 (in Russian)
[22] Giacaglia G. E.O., Perturbation methods in non-linear systems, Springer, New York, 1972 | DOI
[23] Nayfeh A. X., Perturbation methods, Wiley, New York, 2000 | DOI | MR | Zbl