Mots-clés : chaos
@article{VUU_2020_30_4_a6,
author = {A. A. Kilin and E. N. Pivovarova},
title = {Nonintegrability of the problem of a spherical top rolling on a vibrating plane},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {628--644},
year = {2020},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a6/}
}
TY - JOUR AU - A. A. Kilin AU - E. N. Pivovarova TI - Nonintegrability of the problem of a spherical top rolling on a vibrating plane JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 628 EP - 644 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a6/ LA - ru ID - VUU_2020_30_4_a6 ER -
%0 Journal Article %A A. A. Kilin %A E. N. Pivovarova %T Nonintegrability of the problem of a spherical top rolling on a vibrating plane %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 628-644 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a6/ %G ru %F VUU_2020_30_4_a6
A. A. Kilin; E. N. Pivovarova. Nonintegrability of the problem of a spherical top rolling on a vibrating plane. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 628-644. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a6/
[1] Stephenson A., “On a new type of dynamical stability”, Mem. Proc. Manch. Lit. Phil. Sci., 52 (1908), 1–10
[2] Kapitza P. L., “Dynamic stability of a pendulum when its point of suspension vibrates”, Soviet Phys. JETP, 21:5 (1951), 588–597 (in Russian) | MR
[3] Kapitza P. L., “A pendulum with oscillating suspension”, Uspekhi Fizicheskikh Nauk, 44:5 (1951), 7–20 (in Russian) | DOI
[4] Kholostova O. V., “The dynamics of a Lagrange top with a vibrating suspension point”, J. Appl. Math. Mech., 63:5 (1999), 741–750 | DOI | MR | Zbl
[5] Kholostova O. V., “The stability of a “sleeping” Lagrange for with a vibrating suspension point”, J. Appl. Math. Mech., 64:5 (2000), 821–831 | DOI | MR | Zbl
[6] Kholostova O. V., Problems of dynamics of rigid bodies with a vibrating suspension, Institute of Computer Science, M.–Izhevsk, 2016 | MR
[7] Markeev A. P., “On the motion of a heavy dynamically symmetric rigid body with vibrating suspension point”, Mechanics of Solids, 47:4 (2012), 373–379 | DOI | MR
[8] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, J. Appl. Math. Mech., 75:2 (2011), 132–139 | DOI | MR | Zbl
[9] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka, M., 1978
[10] Markeev A. P., Linear Hamiltonian systems and some problems of stability of the satellite center of mass, Regular and Chaotic Dynamics, Institute of Computer Science, M.–Izhevsk, 2009
[11] Kilin A. A., Pivovarova E. N., “Stability and stabilization of steady rotations of a spherical robot on a vibrating base”, Regular and Chaotic Dynamics, 25:6 (2020), 729–752 | DOI | MR
[12] Vetchanin E. V., Mikishanina E. A., “Vibrational stability of periodic solutions of the Liouville equations”, Russian Journal of Nonlinear Dynamics, 15:3 (2019), 351–363 | DOI | MR | Zbl
[13] Awrejcewicz J., Kudra G., “Mathematical modelling and simulation of the bifurcational wobblestone dynamics”, Discontinuity, Nonlinearity, and Complexity, 3:2 (2014), 123–132 | DOI
[14] Awrejcewicz J., Kudra G., “Dynamics of a wobblestone lying on vibrating platform modified by magnetic interactions”, Procedia IUTAM, 22 (2017), 229–236 | DOI
[15] Kilin A. A., Pivovarova E. N., “Chaplygin top with a periodic gyrostatic moment”, Russian Journal of Mathematical Physics, 25:4 (2018), 509–524 | DOI | MR | Zbl
[16] Mamaev I. S., Vetchanin E. V., “Dynamics of rubber Chaplygin sphere under periodic control”, Regular and Chaotic Dynamics, 25:2 (2020), 215–236 | DOI | MR | Zbl
[17] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Different models of rolling for a robot ball on a plane as a generalization of the Chaplygin ball problem”, Regular and Chaotic Dynamics, 24:5 (2019), 560–582 | DOI | MR | Zbl
[18] Bizyaev I. A., Mamaev I. S., “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, International Journal of Non-Linear Mechanics, 126 (2020) | DOI | MR
[19] Ilin K. I., Moffatt H. K., Vladimirov V. A., “Dynamics of a rolling robot”, Proceedings of the National Academy of Sciences, 114:49 (2017), 12858–12863 | DOI | MR | Zbl
[20] Putkaradze V., Rogers S., “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868 | DOI | MR
[21] Putkaradze V., Rogers S. M., “On the normal force and static friction acting on a rolling ball actuated by internal point masses”, Regular and Chaotic Dynamics, 24:2 (2019), 145–170 | DOI | MR | Zbl
[22] Karavaev Yu.L., Kilin A. A., “Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: theory and experiments”, Proceedings of the Steklov Institute of Mathematics, 295:1 (2016), 158–167 | DOI | DOI | MR | Zbl
[23] Bai Y., Svinin M., Yamamoto M., “Dynamics-based motion planning for a pendulum-actuated spherical rolling robot”, Regular and Chaotic Dynamics, 23:4 (2018), 372–388 | DOI | MR | Zbl
[24] Bizyaev I. A., Borisov A. V., Kozlov V. V., Mamaev I. S., “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233 | DOI | MR | Zbl
[25] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration”, Regular and Chaotic Dynamics, 22:8 (2017), 955–975 | DOI | MR | Zbl
[26] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Exotic dynamics of nonholonomic roller racer with periodic control”, Regular and Chaotic Dynamics, 23:7–8 (2018), 983–994 | DOI | MR | Zbl
[27] Kuznetsov S. P., “Regular and chaotic dynamics of a Chaplygin sleigh due to periodic switch of the nonholonomic constraint”, Regular and Chaotic Dynamics, 23:2 (2018), 178–192 | DOI | MR | Zbl
[28] Borisov A. V., Kuznetsov S. P., “Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body”, Regular and Chaotic Dynamics, 23:7–8 (2018), 803–820 | DOI | MR | Zbl
[29] Fedonyuk V., Tallapragada P., “The dynamics of a Chaplygin sleigh with an elastic internal rotor”, Regular and Chaotic Dynamics, 24:1 (2019), 114–126 | DOI | MR | Zbl
[30] Bizyaev I. A., Mamaev I. S., “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, Journal of Physics A: Mathematical and Theoretical, 53:18 (2020), 185701 | DOI | MR
[31] Poincaré H., “Sur le problème des trois corps et les équations de la dynamique”, Acta Mathematica, 13:1 (1890), 1–270 https://projecteuclid.org/euclid.acta/1485881725 | DOI | MR | Zbl
[32] Mel'nikov V. K., “On the stability of a center for time-periodic perturbations”, Trudy Moskovskogo Matematicheskogo Obshchestva, 12, 1963, 3–52 (in Russian) | MR | Zbl
[33] Dovbysh S. A., “Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1990, no. 3, 70–77 (in Russian) | MR | Zbl
[34] Ziglin S. L., “Dichotomy of the separatrices, bifurcation of solutions and nonexistence of an integral in the dynamics of a rigid body”, Trudy Moskovskogo Matematicheskogo Obshchestva, 41, 1980, 287–303 (in Russian) | MR
[35] Burov A. A., Nikonov V. I., “On the nonlinear Meissner equation”, International Journal of Non-Linear Mechanics, 110 (2019), 26–32 | DOI
[36] Li J., Zhang Y., “Solitary wave and chaotic behavior of traveling wave solutions for the coupled KdV equations”, Applied Mathematics and Computation, 218:5 (2011), 1794–1797 | DOI | MR | Zbl
[37] Borisov A. V., Mamaev I. S., Rigid body dynamics, De Gruyter Studies in Mathematical Physics, 52, Higher Education Press and Walter de Gruyter GmbH, Berlin–Boston, 2018 | DOI | MR | MR
[38] Holmes P. J., “Averaging and chaotic motions in forced oscillations”, SIAM Journal on Applied Mathematics, 38:1 (1980), 65–80 | DOI | MR | Zbl
[39] Kozlov V. V., “Integrability and non-integrability in Hamiltonian mechanics”, Russian Mathematical Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl
[40] Kuznetsov S. P., Dynamical chaos, Fizmatlit, M., 2001
[41] Loskutov A. Y., Dzhanoev A. R., “Suppression of chaos in the vicinity of a separatrix”, Journal of Experimental and Theoretical Physics, 98:5 (2004), 1045–1053 | DOI
[42] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regular and Chaotic Dynamics, 13:5 (2008), 443–490 | DOI | MR | Zbl