Mots-clés : Poincaré map
@article{VUU_2020_30_4_a5,
author = {I. A. Bizyaev and I. S. Mamaev},
title = {Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {618--627},
year = {2020},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a5/}
}
TY - JOUR AU - I. A. Bizyaev AU - I. S. Mamaev TI - Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 618 EP - 627 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a5/ LA - ru ID - VUU_2020_30_4_a5 ER -
%0 Journal Article %A I. A. Bizyaev %A I. S. Mamaev %T Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 618-627 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a5/ %G ru %F VUU_2020_30_4_a5
I. A. Bizyaev; I. S. Mamaev. Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 618-627. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a5/
[1] Borisov A. V., Kilin A. A., Pivovarova E. N., “Speedup of the Chaplygin Top by Means of Rotors”, Doklady Physics, 64:3 (2019), 120–124 | DOI
[2] Borisov A. V., Mamaev I. S., “An Integrability of the Problem on Motion of Cylinder and Vortex in the Ideal Fluid”, Regular and Chaotic Dynamics, 8:2 (2003), 163–166 | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Motion of a circular cylinder and $n$ point vortices in a perfect fluid”, Regular and Chaotic Dynamics, 8:4 (2003), 449–462 | DOI | MR | Zbl
[4] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamic Interaction of Point Vortices and a Two-Dimensional Cylinder”, Journal of Mathematical Physics, 48:6 (2007), 065403, 9 pp. | DOI | MR | Zbl
[5] Borisov A. V., Vetchanin E. V., Mamaev I. S., “Motion of a Smooth Foil in a Fluid under the Action of External Periodic Forces. I”, Russian Journal of Mathematical Physics, 26:4 (2019), 412–428 | DOI | MR
[6] De Laat T. W.G., Coene R., “Two-dimensional vortex motion in the cross-flow of a wing-body configuration”, Journal of Fluid Mechanics, 305 (1995), 93–109 | DOI | MR | Zbl
[7] Föppl L., Vortex motion behind a circular cylinder, NASA TM 77015, 1983 https://ntrs.nasa.gov/api/citations/19830012992/downloads/19830012992.pdf
[8] Kanso E., Oskouei B. G., “Stability of a coupled body—vortex system”, Journal of Fluid Mechanics, 600 (2008), 77–94 | DOI | MR | Zbl
[9] Kilin A. A., Pivovarova E. N., “Chaplygin Top with a Periodic Gyrostatic Moment”, Russian Journal of Mathematical Physics, 25:4 (2018), 509–524 | DOI | MR | Zbl
[10] Koiller J., “Note on coupled motions of vortices and rigid bodies”, Physics Letters A, 120:8 (1987), 391–395 | DOI | MR
[11] Kozlov V. V., “Integrability and non-integrability in Hamiltonian mechanics”, Russian Mathematical Surveys, 38:1 (1983), 1–72 | DOI | MR
[12] Mamaev I. S., Vetchanin E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regular and Chaotic Dynamics, 25:2 (2020), 215–236 | DOI | MR | Zbl
[13] Protas B., “Vortex dynamics models in flow control problems”, Nonlinearity, 21:9 (2008), 1–54 | DOI | MR
[14] Protas B., “Center manifold analysis of a point vortex model of vortex shedding with control”, Physica D: Nonlinear Phenomena, 228:2 (2007), 179–187 | DOI | MR | Zbl
[15] Ramodanov S. M., “Motion of a Circular Cylinder and a Vortex in an Ideal Fluid”, Regular and Chaotic Dynamics, 6:1 (2001), 33–38 | DOI | MR | Zbl
[16] Ramodanov S. M., “Motion of a Circular Cylinder and $N$ Point Vortices in a Perfect Fluid”, Regular and Chaotic Dynamics, 7:3 (2002), 291–298 | DOI | MR | Zbl
[17] Ryzhov E. A., “Fluid particle advection in the vicinity of the Föppl vortex system”, Physics Letters A, 376:45 (2012), 3208–3212 | DOI
[18] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with $N$ point vortices”, Physics of Fluids, 14:3 (2002), 1214–1227 | DOI | MR | Zbl
[19] Shashikanth B. N., “Symmetric pairs of point vortices interacting with a neutrally buoyant two-dimensional circular cylinder”, Physics of Fluids, 18:12 (2006), 127103 | DOI | Zbl
[20] Tordella D., “Nonsteady stability of the flow around the circle in the Föppl model”, Quarterly of applied mathematics, 53:4 (1995), 683–694 | DOI | MR | Zbl
[21] Vetchanin E. V., “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 41–57 | DOI | MR | Zbl
[22] Vetchanin E. V., “The motion of a balanced circular cylinder in an ideal fluid under the action of external periodic force and torque”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 41–57 | DOI | MR | Zbl