Control of the motion of a circular cylinder in an ideal fluid using a source
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 604-617
Voir la notice de l'article provenant de la source Math-Net.Ru
The motion of a circular cylinder in an ideal fluid in the field of a fixed source is considered. It is shown that, when the source has constant strength, the system possesses a momentum integral and an energy integral. Conditions are found under which the equations of motion reduced to the level set of the momentum integral admit an unstable fixed point. This fixed point corresponds to circular motion of the cylinder about the source. A feedback is constructed which ensures stabilization of the above-mentioned fixed point by changing the strength of the source.
Keywords:
control, ideal fluid, feedback, motion in the presence of a source.
@article{VUU_2020_30_4_a4,
author = {E. M. Artemova and E. V. Vetchanin},
title = {Control of the motion of a circular cylinder in an ideal fluid using a source},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {604--617},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a4/}
}
TY - JOUR AU - E. M. Artemova AU - E. V. Vetchanin TI - Control of the motion of a circular cylinder in an ideal fluid using a source JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 604 EP - 617 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a4/ LA - en ID - VUU_2020_30_4_a4 ER -
%0 Journal Article %A E. M. Artemova %A E. V. Vetchanin %T Control of the motion of a circular cylinder in an ideal fluid using a source %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 604-617 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a4/ %G en %F VUU_2020_30_4_a4
E. M. Artemova; E. V. Vetchanin. Control of the motion of a circular cylinder in an ideal fluid using a source. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 604-617. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a4/