On estimation of Hausdorff deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 585-603
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a problem concerning the estimation of the Hausdorff deviation of convex polygons in $\mathbb R^2$ from their geometric difference with circles of sufficiently small radius. Problems with such a subject, in which not only convex polygons but also convex compacts in the Euclidean space $\mathbb R^n$ are considered, arise in various fields of mathematics and, in particular, in the theory of differential games, control theory, convex analysis. Estimates of Hausdorff deviations of convex compact sets in $\mathbb R^n$ in their geometric difference with closed balls in $\mathbb R^n$ are presented in the works of L.S. Pontryagin, his staff and colleagues. These estimates are very important in deriving an estimate for the mismatch of the alternating Pontryagin’s integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the mismatch of the attainability sets of nonlinear control systems in $\mathbb R^n$ and the sets approximating them.
The paper considers a specific convex heptagon in $\mathbb R^2$. To study the geometry of this heptagon, we introduce the concept of a wedge in $\mathbb R^2$. On the basis of this notion, we obtain an upper bound for the Hausdorff deviation of a heptagon from its geometric difference with the disc in $\mathbb R^2$ of sufficiently small radius.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
convex polygon in $\mathbb{R}^2$, Hausdorff deviation, wedge, cone, circle, geometric difference of sets.
                    
                  
                
                
                @article{VUU_2020_30_4_a3,
     author = {V. N. Ushakov and M. V. Pershakov},
     title = {On estimation of {Hausdorff} deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {585--603},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a3/}
}
                      
                      
                    TY  - JOUR
AU  - V. N. Ushakov
AU  - M. V. Pershakov
TI  - On estimation of Hausdorff deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 585
EP  - 603
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a3/
LA  - ru
ID  - VUU_2020_30_4_a3
ER  - 
                      
                      
                    %0 Journal Article
%A V. N. Ushakov
%A M. V. Pershakov
%T On estimation of Hausdorff deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 585-603
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a3/
%G ru
%F VUU_2020_30_4_a3
                      
                      
                    V. N. Ushakov; M. V. Pershakov. On estimation of Hausdorff deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 585-603. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a3/
                  
                