On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 572-584 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of determining a multidimensional kernel of an integral term depending on a time variable $t$ and $ (n-1)$-dimensional spatial variable $x'=\left(x_1,\ldots, x_ {n-1}\right)$ in the $n$-dimensional heat equation with a variable coefficient of thermal conductivity is investigated. The direct problem is the Cauchy problem for this equation. The integral term has the time convolution form of kernel and direct problem solution. As additional information for solving the inverse problem, the solution of the direct problem on the hyperplane $x_n = 0$ is given. At the beginning, the properties of the solution to the direct problem are studied. For this, the problem is reduced to solving an integral equation of the second kind of Volterra-type and the method of successive approximations is applied to it. Further the stated inverse problem is reduced to two auxiliary problems, in the second one of them an unknown kernel is included in an additional condition outside integral. Then the auxiliary problems are replaced by an equivalent closed system of Volterra-type integral equations with respect to unknown functions. Applying the method of contraction mappings to this system in the Hölder class of functions, we prove the main result of the article, which is a local existence and uniqueness theorem of the inverse problem solution.
Keywords: integro-differential equation, inverse problem, contraction mapping principle.
Mots-clés : kernel
@article{VUU_2020_30_4_a2,
     author = {D. K. Durdiev and Zh. Z. Nuriddinov},
     title = {On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {572--584},
     year = {2020},
     volume = {30},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Zh. Z. Nuriddinov
TI  - On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 572
EP  - 584
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a2/
LA  - en
ID  - VUU_2020_30_4_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Zh. Z. Nuriddinov
%T On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 572-584
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a2/
%G en
%F VUU_2020_30_4_a2
D. K. Durdiev; Zh. Z. Nuriddinov. On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 572-584. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a2/

[1] Colombo F., “An inverse problem for a parabolic integrodifferential model in the theory of combustion”, Physica D: Nonlinear Phenomena, 236:2 (2007), 81–89 | DOI | MR | Zbl

[2] Grasselli M., “An identification problem for a linear integrodifferential equation occurring in heat flow”, Mathematical Methods in the Applied Sciences, 15:3 (1992), 167–186 | DOI | MR | Zbl

[3] Podio-Guidugli P., “A virtual power format for thermomechanics”, Continuum Mechanics and Thermodynamics, 20:8 (2009), 479–487 | DOI | MR | Zbl

[4] Avdonin S., Ivanov S., Wang J., “Inverse problems for the heat equation with memory”, Inverse Problems and Imaging, 13:1 (2019), 31–38 | DOI | MR | Zbl

[5] Karuppiah K., Kim J. K., Balachandran K., “Parameter identification of an integrodifferential equation”, Nonlinear Functional Analysis and Applications, 20:2 (2015), 169–185 http://nfaa.kyungnam.ac.kr/jour-nfaa.htm | Zbl

[6] Boumenir A., Tuan V., “An inverse problem for the heat equation”, Proceedings of the American Mathematical Society, 138:11 (2010), 3911–3921 https://www.jstor.org/stable/25748278 | DOI | MR | Zbl

[7] Ivanchov M., Vlasov V., “Inverse problem for a two-dimensional strongly degenerate heat equation”, Electronic Journal of Differential Equations, 2018:77 (2018), 1–17 https://ejde.math.txstate.edu/Volumes/2018/77/ivanchov.pdf | MR | Zbl

[8] Huntul M. J., Lesnic D., Hussein M. S., “Reconstruction of time-dependent coefficients from heat moments”, Applied Mathematics and Computation, 301 (2017), 233–253 | DOI | MR | Zbl

[9] Hussein M. S., Lesnic D., “Simultaneous determination of time and space-dependent coefficients in a parabolic equation”, Communications in Nonlinear Science and Numerical Simulation, 33 (2016), 194–217 | DOI | MR | Zbl

[10] Ivanchov M. I., Saldina N. V., “Inverse problem for a parabolic equation with strong power degeneration”, Ukrainian Mathematical Journal, 58:11 (2006), 1685–1703 | DOI | MR | Zbl

[11] Hazanee A., Lesnic D., Ismailov M. I., Kerimov N. B., “Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions”, Applied Mathematics and Computation, 346 (2019), 800–815 | DOI | MR | Zbl

[12] Hazanee A., Lesnic D., Ismailov M. I., Kerimov N. B., “An inverse time-dependent source problems for the heat equation with a non-classical boundary condition”, Applied Mathematical Modelling, 39:20 (2015), 6258–6272 | DOI | MR | Zbl

[13] Hazanee A., Ismailov M. I., Lesnic D., Kerimov N. B., “An inverse time-dependent source problem for the heat equation”, Applied Numerical Mathematics, 69 (2013), 13–33 | DOI | MR | Zbl

[14] Tanana V. P., Ershova A. A., “On the solution of an inverse boundary value problem for composite materials”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:4 (2018), 474–488 (in Russian) | DOI | MR | Zbl

[15] Wu B., Gao Y., Yan L., Wu S., Wang Z., “Existence and uniqueness of an inverse memory kernel for an integro-differential parabolic equation with free boundary”, Journal of Dynamical and Control Systems, 24 (2018), 237–252 | DOI | MR | Zbl

[16] Favaron A., “Identification of memory kernels depending on time and on an angular variable”, Z. Anal. Anwend., 24:4 (2005), 735–762 | DOI | MR

[17] Durdiev D. K., Rashidov A.Sh., “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Differential Equations, 50:1 (2014), 110–116 (in Russian) | DOI | MR | Zbl

[18] Durdiev D. K., Zhumayev Zh.Zh., “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Methods of Functional Analysis and Topology, 25:3 (2019), 219–226 http://mfat.imath.kiev.ua/article/?id=1207 | MR

[19] Durdiev D. K., “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences, 19:4 (2015), 658–666 (in Russian) | DOI | MR | Zbl

[20] Ladyženskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, American Mathematical Society, Providence, RI, 1968 | DOI | MR | MR | Zbl

[21] Romanov V. G., Inverse problems for differential equations, Novosibirsk State University, Novosibirsk, 1973

[22] Imanaliev M. I., Asanova K. A., Iskandarov S., “The Lyusternik–Sobolev lemma and the specific asymptotic stability of solutions of linear homogeneous Volterra-type integro-differential equations of order 3”, Doklady Mathematics, 94 (2016), 418–422 | DOI | MR | Zbl

[23] Imanaliev M. I., Iskandarov S., “Specific stability criterion for solutions of a fourth-order linear homogeneous Volterra-type integrodifferential equation”, Doklady Mathematics, 79 (2009), 231–235 | DOI | MR | Zbl

[24] Kolmogorov A. N., Fomin S. V., Elements of function theory and functional analysis, Nauka, M., 1972 | MR