A priori estimations of geometric parameters of an anomalous object in modeling the soil structure using RES3DINV software
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 696-710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the problem of proper use of software packages that implement methods for solving ill-posed problems. Most of the problems of processing experimental data belong to ill-posed problems. When using methods for solving ill-posed problems, there is a problem of non-uniqueness of the solution, which is solved by introducing a priori information. Obtaining a priori information is possible in different ways, but quantitative estimates involve the use of additional methods for data analysis. Obviously, additional methods should not be more complicated and labor intensive than the main data processing method. Using the RES3DINV electrical prospecting data analysis software as an example, the role of a priori information for obtaining reliable results is demonstrated. The RES3DINV software is used to build a soil model from the measured values of resistivity using electrical survey’s methods. When using the inversion method implemented in the software package, it is necessary to set the input parameters describing the geometric dimensions of the anomalous resistance object, which are usually unknown a priori. By model objects we demonstrate how the incorrect setting of input parameters affects the result of data interpretation. We show that the vector analysis method can be used as a way to obtain a priori information. This method allows us to obtain estimates of the geometric parameters of an anomalous object, does not involve high time and resource expenses, and can be used directly at the site of field experimental measurements.
Keywords: ill-posed problems, data interpretation, geometric parameters, vector analysis.
Mots-clés : a priori information
@article{VUU_2020_30_4_a10,
     author = {O. M. Nemtsova and T. M. Bannikova and V. M. Nemtsov},
     title = {A priori estimations of geometric parameters of an anomalous object in modeling the soil structure using {RES3DINV} software},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {696--710},
     year = {2020},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a10/}
}
TY  - JOUR
AU  - O. M. Nemtsova
AU  - T. M. Bannikova
AU  - V. M. Nemtsov
TI  - A priori estimations of geometric parameters of an anomalous object in modeling the soil structure using RES3DINV software
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 696
EP  - 710
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a10/
LA  - ru
ID  - VUU_2020_30_4_a10
ER  - 
%0 Journal Article
%A O. M. Nemtsova
%A T. M. Bannikova
%A V. M. Nemtsov
%T A priori estimations of geometric parameters of an anomalous object in modeling the soil structure using RES3DINV software
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 696-710
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a10/
%G ru
%F VUU_2020_30_4_a10
O. M. Nemtsova; T. M. Bannikova; V. M. Nemtsov. A priori estimations of geometric parameters of an anomalous object in modeling the soil structure using RES3DINV software. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 696-710. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a10/

[1] Ogorodnikov I. N., Introduction to inverse problems of physical diagnostics, Ural University Press, Yekaterinburg, 2017

[2] Kabanikhin S. I., Inverse and ill-posed problems, SB RAS Publishing House, Novosibirsk, 2018 | DOI

[3] Krogstad H. E., An introduction to inverse problems, TMA 4180 Optimeringsteori, IMF, 2007 https://folk.ntnu.no/hek/Optimering2010/InverseProblems_2010.pdf

[4] Sumin M. I., The regularization method of A. N. Tikhonov for solving operator equations of the first kind, Nizhny Novgorod State University, Nizhny Novgorod, 2016

[5] Sergeev V. V., Denisova A. U., “An iterative method for reconstructing piecewise-constant images with known domain boundaries”, Computer Optics, 37:2 (2013), 239–243 (in Russian)

[6] Gavin H. P., The Levenberg–Marquardt method for nonlinear least squares curve-fitting problems, Department of Civil and Environmental Engineering, Duke University, 2016

[7] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, 1995 | DOI | MR | Zbl

[8] Onak O. N., Dogrusoz Y. S., Weber G. W., “Effects of a priori parameter selection in minimum relative entropy method on inverse electrocardiography problem”, Inverse Problems in Science and Engineering, 26:6 (2018), 877–897 | DOI | MR | Zbl

[9] Bhatt R. N., Positron emission tomography (PET) tumor segmentation and quantification: development of new algorithms, Electronic Theses and Dissertations, Florida International University, 2012 | DOI

[10] Prakash J., Sanny D., Kalva S. K., Pramanik M., Yalavarthy P. K., “Fractional regularization to improve photoacoustic tomographic image reconstruction”, IEEE Transactions on Medical Imaging, 38:8 (2019), 1935–1947 | DOI

[11] Software package “Rus” “Environmental protection” (accessed 13 August 2020)

[12] Holmes J., Chambers J., Meldrum P., Wilkinson P., Boyd J., Williamson P., Huntley D., Sattler K., Elwood D., Sivakumar V., Reeves H., Donohue S., “Four-dimensional electrical resistivity tomography for continuous, near-real-time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada”, Near Surface Geophysics, 18:4 (2020), 337–351 | DOI

[13] Loke M. H., Rapid 3D Resistivity and IP inversion using the least-squares method: geoelectrical imaging 2D and 3D, Geotomo Software, Malaysia, 2011 https://www.geotomosoft.com/gs_brochure3d.pdf

[14] Loke M. H., Barker R. D., “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method”, Geophysical Prospecting, 44:1 (1996), 131–152 | DOI

[15] Li K., Yin X.-Y., Zong Z.-Y., “Reliability enhancement of mixed-domain seismic inversion with bounding constraints”, Inverse Problems in Science and Engineering, 27:2 (2019), 255–277 | DOI | MR

[16] Reichel L., Rodriguez G., “Old and new parameter choice rules for discrete ill-posed problems”, Numerical Algorithms, 63 (2013), 65–87 | DOI | MR | Zbl

[17] Hochstenbach M. E., Reichel L., Rodriguez G., “Regularization parameter determination for discrete ill-posed problems”, Journal of Computational and Applied Mathematics, 273 (2015), 132–149 | DOI | MR | Zbl

[18] Bianchi D., Buccini A., Donatelli M., Serra-Capizzano S., “Iterated fractional Tikhonov regularization”, Inverse Problems, 31:5 (2015), 055005 | DOI | MR | Zbl

[19] Kaltenbacher B., “Minimization based formulations of inverse problems and their regularization”, SIAM Journal on Optimization, 28:1 (2018), 620–645 | DOI | MR | Zbl

[20] Lelièvre P. G., Farquharson C. G., “Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes”, Geophysical Journal International, 195:1 (2013), 330–341 | DOI

[21] Johansson B., Jones S., Dahlin T., Flyhammar P., “Comparisons of 2D- and 3D-inverted resistivity data as well as of resistivity and IP-surveys on a landfill”, Procs. Near Surface – 13th European Meeting of Environmental and Engineering Geophysics (Istanbul, Turkey, 3–5 September, 2007), 2007, P42 https://portal.research.lu.se/portal/files/5819684/4934437.pdf

[22] Gündoğdu N.Y., Candansayar M. E., “Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals”, Geophysics, 83:6 (2018), E399–E407 | DOI

[23] Loke M. H., Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Malaysia, 2019 https://sites.ualberta.ca/ũnsworth/UA-classes/223/loke_course_notes.pdf

[24] MacLennan K., Methods for addressing noise and error in controlled source electromagnetic data, Mines Theses and Dissertations, Digital Collections of Colorado, 2013 https://mountainscholar.org/bitstream/handle/11124/77966/MacLennan_mines_0052E_10119.pdf

[25] Arato A., Piro S., Sambuelli L., “3D inversion of ERT data on an archaeological site using GPR reflection and 3D inverted magnetic data as a priori information”, Near Surface Geophysics, 13:6 (2015), 545–556 | DOI

[26] Nemtsova O., Zhurbin I., Zlobina A., “Vector analysis of pole-pole array for determining the 3D boundary of object”, Near Surface Geophysics, 17:5 (2019), 563–575 | DOI

[27] Buccini A., “Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term”, Applied Numerical Mathematics, 116 (2017), 64–81 | DOI | MR | Zbl

[28] Zlobina A. G., Dogadin S. E., Zhurbin I. V., Nemtsov V. M., “System for diagnostics of natural and anthropogenic environments by shallow electrical profiling”, Khimicheskaya Fizika i Mezoskopiya, 21:3 (2019), 455–464 (in Russian) | DOI