Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 533-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the stable reconstruction problem of the unknown input of a distributed system of second order by results of inaccurate measurements of its solution. The content of the problem considered is as follows. We consider a distributed equation of second order. The solution of the equation depends on the input varying in the time. The input, as well as the solution, is not given in advance. At discrete times the solution of the equation is measured. These measurements are not accurate in general. It is required to design an algorithm for approximate reconstruction of the input that has dynamical and stability properties. The dynamical property means that the current values of approximations of the input are produced on-line, and the stability property means that the approximations are arbitrarily accurate for a sufficient accuracy of measurements. The problem refers to the class of inverse problems. The algorithm presented in the paper is based on the constructions of a stable dynamical inversion and on the combination of the methods of ill-posed problems and positional control theory.
Mots-clés : dynamical inversion
Keywords: distributed system.
@article{VUU_2020_30_4_a0,
     author = {M. S. Blizorukova and V. I. Maksimov},
     title = {Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {533--552},
     year = {2020},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/}
}
TY  - JOUR
AU  - M. S. Blizorukova
AU  - V. I. Maksimov
TI  - Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 533
EP  - 552
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/
LA  - ru
ID  - VUU_2020_30_4_a0
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%A V. I. Maksimov
%T Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 533-552
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/
%G ru
%F VUU_2020_30_4_a0
M. S. Blizorukova; V. I. Maksimov. Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 533-552. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/

[1] Kufner A., Fucik S., Nonlinear differential equations, Elsevier, New York, 1980 | MR | MR | Zbl

[2] Panagiotopoulos P., Inequality problems in mechanics and applications. Convex and nonconvex energy functions, Birkhäuser, Boston, 1985 | DOI | MR | Zbl

[3] Cazenave T., Haraux A., An introduction to semilinear evolution equations, Clarendon Press, Oxford, 1998 | MR | Zbl

[4] Tikhonov A. N., Arsenin V. Y., Solutions of ill-posed problems, John Wiley, New York, 1977 | MR | Zbl

[5] Banks H. T., Kunisch K., Estimation techniques for distributed parameter systems, Birkhäuser, Boston, 1989 | DOI | MR | Zbl

[6] Lavrent'ev M.M., Romanov V. G., Shishatskii S. P., Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980 | MR

[7] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, De Gruyter, 2002 | DOI | MR

[8] Vasil'ev F.P., Methods for solving extremal problems, Nauka, M., 1981

[9] Kabanikhin S. I., Inverse and ill-posed problems: theory and applications, De Gruyter, Berlin, 2011 | DOI | MR

[10] Osipov Yu.S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl

[11] Maksimov V. I., Dynamical inverse problems of distributed systems, De Gruyter, 2002 | DOI | MR

[12] Osipov Yu.S., Kryazhimskii A. V., Maksimov V. I., Methods of dynamical reconstruction of inputs of control systems, Ural Branch of the Russian Academy of Science, Ekaterinburg, 2011

[13] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer Verlag, New York–Berlin, 1988 | MR | Zbl

[14] Osipov Yu., Pandolfi L., Maksimov V., “Problems of dynamical reconstruction and robust boundary control: the case of the Dirichlet boundary conditions”, Journal of Inverse and Ill-posed Problems, 9:2 (2001), 149–162 | DOI | MR | Zbl

[15] Maksimov V. I. Dynamic reconstruction of the right-hand side of a hyperbolic equation, Computational Mathematics and Mathematical Physics, 55:6 (2015), 1004–1014 | DOI | DOI | MR | Zbl

[16] Maksimov V. I., “An algorithm for dynamic reconstruction of the right-hand side of a second-order equation with distributed parameters”, Computational Mathematics and Mathematical Physics, 57:8 (2017), 1248–1261 | DOI | DOI | MR | Zbl

[17] Maksimov V. I., Mordukhovich B. S., “Feedback design of differential equations of reconstruction for second-order distributed parameter systems”, International Journal of Applied Mathematics and Computer Science, 27:4 (2017), 467–475 | DOI | MR | Zbl

[18] Blizorukova M. S., Maksimov V. I. Dynamic input reconstruction algorithm for a nonlinear equation with distributed parameters, Differential Equations, 56:5 (2020), 641–648 | DOI | DOI | MR | Zbl

[19] Borukhov V. T., Zayats G. M., “Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation”, International Journal of Heat and Mass Transfer, 91 (2015), 1106–1113 | DOI

[20] Borukhov V. T., Kostyukova O. I., “Identification of time-dependent coefficients of heat transfer by the method of suboptimal stage-by-stage optimization”, International Journal of Heat and Mass Transfer, 59 (2013), 286–294 | DOI