Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 533-552

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the stable reconstruction problem of the unknown input of a distributed system of second order by results of inaccurate measurements of its solution. The content of the problem considered is as follows. We consider a distributed equation of second order. The solution of the equation depends on the input varying in the time. The input, as well as the solution, is not given in advance. At discrete times the solution of the equation is measured. These measurements are not accurate in general. It is required to design an algorithm for approximate reconstruction of the input that has dynamical and stability properties. The dynamical property means that the current values of approximations of the input are produced on-line, and the stability property means that the approximations are arbitrarily accurate for a sufficient accuracy of measurements. The problem refers to the class of inverse problems. The algorithm presented in the paper is based on the constructions of a stable dynamical inversion and on the combination of the methods of ill-posed problems and positional control theory.
Mots-clés : dynamical inversion
Keywords: distributed system.
@article{VUU_2020_30_4_a0,
     author = {M. S. Blizorukova and V. I. Maksimov},
     title = {Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {533--552},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/}
}
TY  - JOUR
AU  - M. S. Blizorukova
AU  - V. I. Maksimov
TI  - Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 533
EP  - 552
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/
LA  - ru
ID  - VUU_2020_30_4_a0
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%A V. I. Maksimov
%T Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 533-552
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/
%G ru
%F VUU_2020_30_4_a0
M. S. Blizorukova; V. I. Maksimov. Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 4, pp. 533-552. http://geodesic.mathdoc.fr/item/VUU_2020_30_4_a0/