Modeling of reasoning when searching for objects in images
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 497-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Visual patterns, for example, handwritten letters or objects of aerospace observations, are highly variable. The high variety and large volume of unstructured information lead to the need for complex and resource-intensive calculations. Unfortunately, image analysis approaches based on the domain ontology do not specify any method for automatic selection of criteria (features) and decision-making rules. Insufficient structuredness of cases and a large variability of object images lead to a rapid growth of the case base, which significantly reduces the performance of the decision support system. The article proposes an approach to the structural analysis of images, which consists in sequential refinement of objects' features and weakening of interpretation rules during an iterative search of facts using the ontology of images represented as attributed graphs of relationships between elements of objects. The algorithm of reasoning on graphic information consists in the sequence of task (functional) actions necessary for processing and analyzing the image in accordance with the task, the actions of the system to prepare conditions for their implementation, as well as to organize and manage the reasoning process.
Mots-clés : image
Keywords: informative feature, attributed graph, structured case, ontology, reasoner, iterative strategy, case graph matching.
@article{VUU_2020_30_3_a9,
     author = {A. V. Kuchuganov and D. R. Kasimov and V. N. Kuchuganov},
     title = {Modeling of reasoning when searching for objects in images},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {497--512},
     year = {2020},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a9/}
}
TY  - JOUR
AU  - A. V. Kuchuganov
AU  - D. R. Kasimov
AU  - V. N. Kuchuganov
TI  - Modeling of reasoning when searching for objects in images
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 497
EP  - 512
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a9/
LA  - ru
ID  - VUU_2020_30_3_a9
ER  - 
%0 Journal Article
%A A. V. Kuchuganov
%A D. R. Kasimov
%A V. N. Kuchuganov
%T Modeling of reasoning when searching for objects in images
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 497-512
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a9/
%G ru
%F VUU_2020_30_3_a9
A. V. Kuchuganov; D. R. Kasimov; V. N. Kuchuganov. Modeling of reasoning when searching for objects in images. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 497-512. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a9/

[1] Cheriguene R. S., Djerriri K., “Case-based reasoning for object-based remotely sensed image classification”, 37th EARSeL Symposium: Smart Future with Remote Sensing, 2017 https://www.researchgate.net/publication/318108617

[2] Dou J., Chang K.-T., Chen S., Yunus A. P., Liu J.-K., Xia H., Zhu Z., “Automatic case-based reasoning approach for landslide detection: Integration of object-oriented image analysis and a genetic algorithm”, Remote Sensing, 7:4 (2015), 4318–4342 | DOI

[3] Liu Y., Li X., “Domain adaptation for land use classification: A spatio-temporal knowledge reusing method”, ISPRS Journal of Photogrammetry and Remote Sensing, 98 (2014), 133–144 | DOI

[4] Belgiu M., Hofer B., Hofmann P., “Coupling formalized knowledge bases with object-based image analysis”, Remote Sensing Letters, 5:6 (2014), 530–538 | DOI

[5] Gu H., Li H., Yan L., Liu Z., Blaschke T., Soergel U., “An object-based semantic classification method for high resolution remote sensing imagery using ontology”, Remote Sensing, 9:4 (2017), 329 | DOI

[6] Abburu S., Golla S. B., “A generic framework for multiple and multilevel classification and semantic interpretation of satellite images”, World Engineering and Applied Sciences Journal, 7:2 (2016), 107–113

[7] Milich V. N., Smetanin V. A., “Using the beta distribution for the analysis of informative value of features and for improving the efficiency of decision rule for texture images recognition”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 3, 134–141 (in Russian) | DOI | Zbl

[8] Alirezaie M., Kiselev A., L{ä}ngkvist M., Kl{ü}gl F., Loutfi A., “An ontology-based reasoning framework for querying satellite images for disaster monitoring”, Sensors, 17:11 (2017), 2545 | DOI

[9] Baader F., Nutt W., “Basic description logics”, The description logic handbook: theory, implementation, and applications, eds. Baader F., Calvanese D., McGuinness D., Nardi D., Patel-Schneider P. F., Cambridge University Press, 2003, 43–95 | MR

[10] Zolin E. E., Description logic (lectures) (in Russian)

[11] Kuchuganov M. V., Kuchuganov A. V., “Description logic on image graphs”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:4 (2018), 582–594 (in Russian) | DOI | MR | Zbl

[12] Kasimov D. R., Kuchuganov A. V., Kuchuganov V. N., Oskolkov P. P., “Approximation of color images based on the clusterization of the color palette and smoothing boundaries by splines and arcs”, Programming and Computer Software, 44:5 (2018), 295–302 | DOI | MR

[13] Kuchuganov V., Kasimov D., “An intelligent environment for learning techniques and strategies of solving combinatorial problems”, Proceedings of the III International Scientific Conference «Information Technologies in Science, Management, Social Sphere and Medicine», ITSMSSM 2016, Atlantis Press, 2016, 204–207 | DOI

[14] Maggiori E., Tarabalka Y., Charpiat G., Alliez P., “Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark”, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | DOI