Filters and linked families of sets
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 444-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of ultrafilters (u/f) and maximal linked systems (MLS) on the widely understood measurable space (MS) and representations of linked (not necessarily maximal) families and filters on this MS are investigated. Conditions realizing maximality of linked families (systems) and natural representations for bitopological spaces (BTS) of u/f and MLS are established. Equipments of sets of linked families and filters corresponding to Wallman and Stone schemes are studied; the connection of these equipments with analogous equipments (with topologies) for u/f and MLS leading to above-mentioned BTS is studied too. Properties of linked family products for two (widely understood) MS are investigated. It is shown that MLS on the $\pi$-system product (that is, on the family of «measurable» rectangles) are limited to products of corresponding MLS on initial spaces.
Keywords: maximal linked system, family of sets, topology, ultrafilter.
@article{VUU_2020_30_3_a6,
     author = {A. G. Chentsov},
     title = {Filters and linked families of sets},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {444--467},
     year = {2020},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Filters and linked families of sets
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 444
EP  - 467
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/
LA  - ru
ID  - VUU_2020_30_3_a6
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Filters and linked families of sets
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 444-467
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/
%G ru
%F VUU_2020_30_3_a6
A. G. Chentsov. Filters and linked families of sets. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 444-467. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/

[1] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[2] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977 | MR | Zbl

[3] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fundamenta Mathematicae, 89:1 (1975), 81–91 | DOI | MR | Zbl

[4] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006

[5] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl

[6] Chentsov A. G., “To a question on the supercompactness of ultrafilter spaces”, Ural Math. J., 5:1 (2019), 31–47 | DOI | MR | Zbl

[7] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005

[8] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, North-Holland, Amsterdam, 2005 | MR | Zbl

[9] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 2, 2019, 240–257 (in Russian) | DOI

[10] Gryzlov A. A., “On convergent sequences and copies of $\beta{N}$ in one compactification of $N$”, XI Prague Symposium on General Topology (Prague, Czech. Rep., 2011), 29 | MR

[11] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 (in Russian) | DOI

[12] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 (in Russian) | DOI | Zbl

[13] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 257–272 (in Russian) | DOI

[14] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | MR

[15] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004

[16] Neve Zh., Mathematical foundations of probability theory, Mir, M., 1969

[17] Chentsov A. G., “Ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 1, 2020, 274–292 (in Russian) | DOI

[18] Chentsov A. G., “Attraction sets in abstract attainability problems: Equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl

[19] Engelking R., General topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1985 | MR

[20] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 86–102 (in Russian) | DOI | Zbl

[21] Chentsov A. G., “On the supercompactness of ultrafilter space with the topology of Walman type”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 74–101 | DOI | Zbl

[22] Chentsov A. G., “Some properties of ultrafilters of widely understood measurable spaces”, Doklady Akademii Nauk, 486:1 (2019), 24–29 | Zbl

[23] Chentsov A. G., “Maximal linked systems and ultrafilters: basic rerpesentations and topological properties”, Vestnik Rossiiskikh Universitetov. Matematika, 25:129 (2020), 68–84 | DOI

[24] Chentsov A. G., Elements of finitely additive measure theory, v. I, USTU-UPI, Yekaterinburg, 2008