@article{VUU_2020_30_3_a6,
author = {A. G. Chentsov},
title = {Filters and linked families of sets},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {444--467},
year = {2020},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/}
}
A. G. Chentsov. Filters and linked families of sets. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 444-467. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a6/
[1] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR
[2] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977 | MR | Zbl
[3] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fundamenta Mathematicae, 89:1 (1975), 81–91 | DOI | MR | Zbl
[4] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006
[5] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl
[6] Chentsov A. G., “To a question on the supercompactness of ultrafilter spaces”, Ural Math. J., 5:1 (2019), 31–47 | DOI | MR | Zbl
[7] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005
[8] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, North-Holland, Amsterdam, 2005 | MR | Zbl
[9] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 2, 2019, 240–257 (in Russian) | DOI
[10] Gryzlov A. A., “On convergent sequences and copies of $\beta{N}$ in one compactification of $N$”, XI Prague Symposium on General Topology (Prague, Czech. Rep., 2011), 29 | MR
[11] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 (in Russian) | DOI
[12] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 (in Russian) | DOI | Zbl
[13] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 257–272 (in Russian) | DOI
[14] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | MR
[15] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004
[16] Neve Zh., Mathematical foundations of probability theory, Mir, M., 1969
[17] Chentsov A. G., “Ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 1, 2020, 274–292 (in Russian) | DOI
[18] Chentsov A. G., “Attraction sets in abstract attainability problems: Equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl
[19] Engelking R., General topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1985 | MR
[20] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 86–102 (in Russian) | DOI | Zbl
[21] Chentsov A. G., “On the supercompactness of ultrafilter space with the topology of Walman type”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 74–101 | DOI | Zbl
[22] Chentsov A. G., “Some properties of ultrafilters of widely understood measurable spaces”, Doklady Akademii Nauk, 486:1 (2019), 24–29 | Zbl
[23] Chentsov A. G., “Maximal linked systems and ultrafilters: basic rerpesentations and topological properties”, Vestnik Rossiiskikh Universitetov. Matematika, 25:129 (2020), 68–84 | DOI
[24] Chentsov A. G., Elements of finitely additive measure theory, v. I, USTU-UPI, Yekaterinburg, 2008