On one control problem with disturbance and vectograms depending linearly on given sets
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 429-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control problem with a given end time is considered, in which the control vectograms and disturbance depend linearly on the given convex compact sets. A multivalued mapping of the phase space of the control problem to the linear normed space $E$ is given. The goal of constructing a control is that at the end of the control process the fixed vector of the space $E$ belongs to the image of the multivalued mapping for any admissible realization of the disturbance. A stable bridge is defined in terms of multivalued functions. The presented procedure constructs, according to a given multivalued function which is a stable bridge, a control that solves the problem. Explicit formulas are obtained that determine a stable bridge in the considered control problem. Conditions are found under which the constructed stable bridge is maximal. Some problems of group pursuit can be reduced to the considered control problem with disturbance. The article provides such an example.
Keywords: control problem, disturbance, stable bridge.
@article{VUU_2020_30_3_a5,
     author = {V. I. Ukhobotov and V. N. Ushakov},
     title = {On one control problem with disturbance and vectograms depending linearly on given sets},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {429--443},
     year = {2020},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a5/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - V. N. Ushakov
TI  - On one control problem with disturbance and vectograms depending linearly on given sets
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 429
EP  - 443
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a5/
LA  - ru
ID  - VUU_2020_30_3_a5
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A V. N. Ushakov
%T On one control problem with disturbance and vectograms depending linearly on given sets
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 429-443
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a5/
%G ru
%F VUU_2020_30_3_a5
V. I. Ukhobotov; V. N. Ushakov. On one control problem with disturbance and vectograms depending linearly on given sets. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a5/

[1] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974 | MR

[2] Krasovskii N. N., Control of dynamical system, Nauka, M., 1985

[3] Pontryagin L. S., “Linear differential games. I”, Soviet Mathematics. Doklady, 8 (1967), 769–771 | MR | Zbl

[4] Pontryagin L. S., “Linear differential games. II”, Soviet Mathematics. Doklady, 8 (1967), 910–912 | MR | Zbl

[5] Satimov N. Yu., “One pursuit method in linear differential games”, Dokl. Akad. Nauk UzSSR, 1981, no. 6, 5–7 (in Russian) | Zbl

[6] Chikrii A. A. An analytical method in dynamic pursuit games, Proceedings of the Steklov Institute of Mathematics, 271 (2010), 69–85 | DOI | MR | Zbl

[7] Ukhobotov V. I., “A stable bridge in game with vectograms that depend linearly on given sets”, Soviet Mathematics, 32:2 (1988), 89–92 | MR | Zbl

[8] Matviychuk A. R., Ukhobotov V. I., Ushakov A. V., Ushakov V. N., “The approach problem of a nonlinear controlled system in a finite time interval”, Journal of Applied Mathematics and Mechanics, 81:2 (2017), 114–128 | DOI | MR | Zbl

[9] Ushakov V. N., Ukhobotov V. I., Lipin A. E., “An addition to the definition of a stable bridge and an approximating system of sets in differential games”, Proceedings of the Steklov Institute of Mathematics, 304 (2019), 268–280 | DOI | DOI | MR | Zbl

[10] Ukhobotov V. I., “Synthesis of guaranteed control based on approximating scheme”, Proceedings of the Steklov Institute of Mathematics, 2000, suppl. 1, 254–260 | MR | Zbl

[11] Kumkov S. S., Le Menec S., Patsko V. S., “Zero-sum pursuit-evasion differential games with many objects: survey of publications”, Dynamic Games and Applications, 7 (2017), 609–633 | DOI | MR | Zbl

[12] Izmest'ev I. V., Ukhobotov V. I., “Game problem of convergence of a group of objects with different types of dynamics, and target”, International Conference «Global Smart Industry Conference», GloSIC, IEEE, 2018 | DOI

[13] Petrov N. N., Narmanov A. Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[14] Kolmogorov A. N., Fomin S. V., Elements of theory of functions and functional analysis, Nauka, M., 1972 | MR

[15] Pshenichnyi B. N., Sagaidak M. I., “About differential games with fixed time”, Kibernetika, 1970, no. 2, 54–63 (in Russian) | Zbl

[16] Ukhobotov V. I., “Stable property of the programmed absorption operator in games with simple motion and with a convex target in spaces with incomplete linear structure”, Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, 2003, no. 8, 181–189 (in Russian) | MR