On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 410-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the regularization of the Lagrange principle (LP) in the convex constrained optimization problem with operator constraint-equality in a Hilbert space and with a finite number of functional inequality-constraints. The objective functional of the problem is not, generally speaking, strongly convex. The set of admissible elements of the problem is also embedded into a Hilbert space and is not assumed to be bounded. Obtaining a regularized LP is based on the dual regularization method and involves the use of two regularization parameters and two corresponding matching conditions at the same time. One of the regularization parameters is «responsible» for the regularization of the dual problem, while the other is contained in a strongly convex regularizing addition to the objective functional of the original problem. The main purpose of the regularized LP is the stable generation of generalized minimizing sequences that approximate the exact solution of the problem by function and by constraint, for the purpose of its practical stable solving.
Keywords: constrained optimization, instability, dual regularization, regularized Lagrange principle, generalized minimizing sequence.
@article{VUU_2020_30_3_a4,
     author = {M. I. Sumin},
     title = {On the regularization of the {Lagrange} principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {410--428},
     year = {2020},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 410
EP  - 428
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/
LA  - ru
ID  - VUU_2020_30_3_a4
ER  - 
%0 Journal Article
%A M. I. Sumin
%T On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 410-428
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/
%G ru
%F VUU_2020_30_3_a4
M. I. Sumin. On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 410-428. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Plenum Press, New York, 1987 | DOI | MR | MR

[2] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011

[3] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[4] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl

[5] Sumin M. I., “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Vestnik Tambovskogo Universiteta. Seriya Estestvennye i Tekhnicheskie Nauki, 23:124 (2018), 757–775 (in Russian) | DOI

[6] Sumin M. I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 279–296 (in Russian) | DOI

[7] Tikhonov A. N., Arsenin V. Ya., Solutions of Ill-Posed Problems, Halsted Press, New York, 1977 | MR | MR

[8] Krasnov M. L., Kiselev A. I., Makarenko G. I., Integral Equations, Nauka, M., 1976

[9] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl

[10] Gol'shtein E. G., Duality theory in mathematical programming and its applications, Nauka, M., 1971

[11] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | MR | Zbl

[12] Sumin M. I., “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 252–269 (in Russian) | DOI

[13] Sumin M. I., “On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 19, no. 4, 2013, 231–240 (in Russian)

[14] Kuterin F. A., Sumin M. I., “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Mathematical Models and Computer Simulations, 9:3 (2017), 328–338 | DOI | MR | Zbl

[15] Kuterin F. A., Sumin M. I., “The stable iterative Lagrange principle in convex programming as an instrument of solving unstable problems”, Comput. Math. Math. Phys., 57:1 (2017), 71–82 | DOI | DOI | MR | Zbl