@article{VUU_2020_30_3_a4,
author = {M. I. Sumin},
title = {On the regularization of the {Lagrange} principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {410--428},
year = {2020},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/}
}
TY - JOUR AU - M. I. Sumin TI - On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 410 EP - 428 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/ LA - ru ID - VUU_2020_30_3_a4 ER -
%0 Journal Article %A M. I. Sumin %T On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 410-428 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/ %G ru %F VUU_2020_30_3_a4
M. I. Sumin. On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 410-428. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a4/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Plenum Press, New York, 1987 | DOI | MR | MR
[2] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011
[3] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[4] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl
[5] Sumin M. I., “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Vestnik Tambovskogo Universiteta. Seriya Estestvennye i Tekhnicheskie Nauki, 23:124 (2018), 757–775 (in Russian) | DOI
[6] Sumin M. I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 279–296 (in Russian) | DOI
[7] Tikhonov A. N., Arsenin V. Ya., Solutions of Ill-Posed Problems, Halsted Press, New York, 1977 | MR | MR
[8] Krasnov M. L., Kiselev A. I., Makarenko G. I., Integral Equations, Nauka, M., 1976
[9] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl
[10] Gol'shtein E. G., Duality theory in mathematical programming and its applications, Nauka, M., 1971
[11] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | MR | Zbl
[12] Sumin M. I., “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 252–269 (in Russian) | DOI
[13] Sumin M. I., “On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 19, no. 4, 2013, 231–240 (in Russian)
[14] Kuterin F. A., Sumin M. I., “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Mathematical Models and Computer Simulations, 9:3 (2017), 328–338 | DOI | MR | Zbl
[15] Kuterin F. A., Sumin M. I., “The stable iterative Lagrange principle in convex programming as an instrument of solving unstable problems”, Comput. Math. Math. Phys., 57:1 (2017), 71–82 | DOI | DOI | MR | Zbl