The meromorphic functions of completely regular growth on the upper half-plane
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 396-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A strictly positive continuous unbounded increasing function $\gamma(r)$ on the half-axis $[0,+\infty)$ is called growth function. Let the growth function $\gamma(r)$ satisfies the condition $\gamma(2r)\leq M\gamma(r)$ for some $M>0$ and for all $r>0$. In the paper, the class $JM(\gamma(r))^o$ of meromorphic functions of completely regular growth on the upper half-plane with respect to the growth function $\gamma$ is considered. The criterion for the meromorphic function $f$ to belong to the space $JM(\gamma(r))^o$ is obtained. The definition of the indicator of function from the space $JM(\gamma(r))^o$ is introduced. It is proved that the indicator belongs to the space $\mathbf{L}^p[0,\pi]$ for all $p>1$.
Keywords: just meromorphic function, complete measure, function of growth, function of completely regular growth, conjugate series, indicator.
Mots-clés : Fourier coefficients
@article{VUU_2020_30_3_a3,
     author = {K. G. Malyutin and M. V. Kabanko},
     title = {The meromorphic functions of completely regular growth on the upper half-plane},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {396--409},
     year = {2020},
     volume = {30},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a3/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
TI  - The meromorphic functions of completely regular growth on the upper half-plane
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 396
EP  - 409
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a3/
LA  - en
ID  - VUU_2020_30_3_a3
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%T The meromorphic functions of completely regular growth on the upper half-plane
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 396-409
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a3/
%G en
%F VUU_2020_30_3_a3
K. G. Malyutin; M. V. Kabanko. The meromorphic functions of completely regular growth on the upper half-plane. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 396-409. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a3/

[1] Bari N. K., Trigonometric series, GIFFL, M., 1961

[2] Edwards R. E., Fourier series. A modern introduction, v. 2, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl

[3] Fedorov M. A., Grishin A. F., “Some questions of the Nevanlinna theory for the complex half-plane”, Interface Science, 6:3 (1998), 223–271 | DOI | MR

[4] Govorov N. V., “On the indicator of functions of nonintegral order that are analytic and of completely regular growth in a halfplane”, Sov. Math., Dokl., 6 (1965), 697–701 | MR | MR | Zbl

[5] Govorov N. V., “On the indicator of functions of integral order, analytic and of completely regular growth in a halfplane”, Sov. Math., Dokl., 8 (1967), 159–163 | MR | Zbl

[6] Grishin A. F., “On regularity of the growth of subharmonic functions”, Respublikanskii Nauchnyi Sbornik, Teoriya Funktsii, Funktsional'nyi Analiz i ikh Prilozheniya, 6, Kharkiv University, Kharkiv, 1968, 3–29 (in Russian)

[7] Grishin A. F., “On regularity of the growth of subharmonic functions. III”, Teoriya Funktsii, Funktsional'nyi Analiz i ikh Prilozheniya: Respublikanskii Nauchnyi Sbornik, 7, Kharkiv University, Kharkiv, 1968, 59–84 (in Russian)

[8] Grishin A. F., “On regularity of the growth of subharmonic functions. IV”, Respublikanskii Nauchnyi Sbornik, Teoriya Funktsii, Funktsional'nyi Analiz i ikh Prilozheniya, 8, Kharkiv University, Kharkiv, 1969, 126–135 (in Russian)

[9] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. I”, Matematicheskaya Fizika, Analiz, Geometriya, 1:2 (1994), 193–215 (in Russian) | MR | Zbl

[10] Kondratjuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth”, Mathematics of the USSR — Sbornik, 35:1 (1979), 63–84 | DOI | MR

[11] Kondratjyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. II”, Mathematics of the USSR — Sbornik, 41:1 (1982), 101–113 | DOI | MR

[12] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. III”, Mathematics of the USSR — Sbornik, 48:2 (1984), 327–338 | DOI | MR | Zbl

[13] Lévine B., “Sur la croissance d'une fonction entière suivant un rayon et la distribution de ses zéros suivant leurs arguments”, Rec. Math. [Mat. Sbornik] N. S., 2(44):6 (1937), 1097–1142 (in Russian)

[14] Levin B., Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | DOI | MR | Zbl

[15] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sbornik: Mathematics, 192:6 (2001), 843–861 | DOI | MR | Zbl

[16] Malyutin K. G., Sadik N., “Delta-subharmonic functions of completely regular growth in the half-plane”, Doklady Mathematics, 64:2 (2001), 194–196 | MR | Zbl

[17] Malyutin K. G., Sadik N., “Representation of subharmonic functions in a half-plane”, Sbornik: Mathematics, 198:12 (2007), 1747–1761 | DOI | MR | Zbl

[18] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. I”, Commentarii Mathematici Helvetici, 11:1 (1938), 180–214 | DOI | MR

[19] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. II”, Commentarii Mathematici Helvetici, 12:1 (1939), 25–65 | DOI | MR

[20] Pólya G., “Bemerkugen {ü}ber unendlichen Folgen und ganze Functionen”, Mathematische Annalen, 88:3 (1923), 169–183 | DOI | MR

[21] Popov A. Yu., Solodov A. P., “Estimates with sharp constants of the sums of sine series with monotone coefficients of certain classes in terms of the Salem majorant”, Mathematical Notes, 104:5 (2018), 702–711 | DOI | DOI | MR | Zbl

[22] Rubel L. A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bulletin de la Société Mathématique de France, 96 (1968), 53–96 | DOI | MR | Zbl

[23] Solodov A. P., “Exact constants in Telyakovskii's two-sided estimate of the sum of a sine series with convex sequence of coefficients”, Mathematical Notes, 107:6 (2020), 988–1001 | DOI | DOI | MR | MR | Zbl

[24] Telyakovskii S. A., “On the rate of convergence in $L$ of Fourier sine series with monotone coefficients”, Mathematical Notes, 100:3 (2016), 472–476 | DOI | DOI | MR | Zbl