The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. 
Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i. e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. 
Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$.  A. A. Dzhalilov and K. M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i. e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. 
We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i. e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. 
Using the constructed thermodynamic formalism, we study the exponents of singularity of the 
invariant measure $ \mu_{T} $ of homeomorphism $ T $.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
circle homeomorphism, break point, rotation number, invariant measure, thermodynamic formalism.
                    
                  
                
                
                @article{VUU_2020_30_3_a0,
     author = {A. A. Dzhalilov and J. J. Karimov},
     title = {The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {343--366},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Dzhalilov AU - J. J. Karimov TI - The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 343 EP - 366 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/ LA - ru ID - VUU_2020_30_3_a0 ER -
%0 Journal Article %A A. A. Dzhalilov %A J. J. Karimov %T The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 343-366 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/ %G ru %F VUU_2020_30_3_a0
A. A. Dzhalilov; J. J. Karimov. The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/
