The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i. e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A. A. Dzhalilov and K. M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i. e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i. e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
Keywords: circle homeomorphism, break point, rotation number, invariant measure, thermodynamic formalism.
@article{VUU_2020_30_3_a0,
     author = {A. A. Dzhalilov and J. J. Karimov},
     title = {The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {343--366},
     year = {2020},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
AU  - J. J. Karimov
TI  - The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 343
EP  - 366
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/
LA  - ru
ID  - VUU_2020_30_3_a0
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%A J. J. Karimov
%T The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 343-366
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/
%G ru
%F VUU_2020_30_3_a0
A. A. Dzhalilov; J. J. Karimov. The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/

[1] Arnol'd V. I., “Small denominators. I. Mappings of the circumference onto itself”, Am. Math. Soc., Transl., II. Ser., 46 (1965), 213–284 | DOI | Zbl

[2] Bowen R., Methods of symbolic dynamics, Mir, M., 1979

[3] Dzhalilov A. A., Khanin K. M., “On an invariant measure for homeomorphisms of a circle with a point of break”, Functional Analysis and Its Applications, 32:3 (1998), 153–161 | DOI | DOI | MR | Zbl

[4] Dzhalilov A. A., “The H{ö}lder property of singular invariant measures of circle homeomorphisms with single corners”, Theoretical and Mathematical Physics, 121:3 (1999), 1557–1566 | DOI | DOI | MR | Zbl

[5] Dzhalilov A. A., “Thermodynamic formalism and singular invariant measures for critical circle maps”, Theoretical and Mathematical Physics, 134:2 (2003), 166–180 | DOI | DOI | MR | Zbl

[6] Dzhalilov A. A., “Limiting laws for entrance times of critical mappings of a circle”, Theoretical and Mathematical Physics, 138:2 (2004), 190–207 | DOI | DOI | MR | Zbl

[7] Cornfeld I. P., Fomin S. V., Sinai Ya. G., Ergodic theory, Springer, New York, 1982 | DOI | MR | MR | Zbl

[8] Sinai Ya. G., Khanin K. M., “Smoothness of conjugacies of diffeomorphisms of the circle with rotations”, Russian Mathematical Surveys, 44:1 (1989), 69–99 | DOI | MR

[9] Cunha K., Smania D., “Rigidity for piecewise smooth homeomorphisms on the circle”, Advances in Mathematics, 250 (2014), 193–226 | DOI | MR | Zbl

[10] Denjoy A., “Sur les courbes définies par les équations différentielles à la surface du tore”, Journal de Mathématiques Pures et Appliquées, 11 (1932), 333–376 | MR

[11] de Faria E., de Melo W., “Rigidity of critical circle mappings I”, Journal of the European Mathematical Society, 1:4 (1999), 339–392 | DOI | MR | Zbl

[12] Herman M. R., “Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations”, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 49:1 (1979), 5–233 | DOI | MR | Zbl

[13] Katznelson Y., Ornstein D., “The differentiability of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory and Dynamical Systems, 9:4 (1989), 643–680 | DOI | MR | Zbl

[14] Khanin K. M., Khmelev D., “Renormalizations and rigidity theory for circle homeomorphisms with singularities of break type”, Communications in Mathematical Physics, 235:1 (2003), 69–124 | DOI | MR | Zbl

[15] Khanin K., Kocić S., “Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks”, Geometric and Functional Analysis, 24:6 (2014), 2002–2028 | DOI | MR | Zbl

[16] Marmi S., Moussa P., Yoccoz J.-C., “Linearization of generalized interval exchange maps”, Annals of Mathematics, 176:3 (2012), 1583–1646 | DOI | MR | Zbl

[17] de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993 | DOI | MR | Zbl

[18] Ruelle D., Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics, Cambridge University Press, Cambridge, 2004 | DOI | MR

[19] Sinai Ya. G., “Gibbs measures in ergodic theory”, Russian Mathematical Surveys, 27:4 (1972), 21–69 | DOI | MR | Zbl

[20] Vul E. B., Sinai Ya. G., Khanin K. M., “Feigenbaum universality and the thermodynamic formalism”, Russian Mathematical Surveys, 39:3 (1984), 1–40 | DOI | MR | Zbl

[21] Vul E. B., Khanin K. M., “Circle homeomorphisms with weak discontinuities”, Advances in Sov. Math., 3 (1991), 57–98 https://bookstore.ams.org/advsov-3 | MR | Zbl

[22] Yoccoz J.-C., “Conjugaison différentiable des difféomorphismes du cercle dont le nomber de rotation vérifie une condition diophantienne”, Annales scientifiques de l'École Normale Supérieure. Serie 4, 17:3 (1984), 333–359 | DOI | MR | Zbl