The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i. e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A. A. Dzhalilov and K. M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i. e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i. e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
Keywords: circle homeomorphism, break point, rotation number, invariant measure, thermodynamic formalism.
@article{VUU_2020_30_3_a0,
     author = {A. A. Dzhalilov and J. J. Karimov},
     title = {The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {343--366},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
AU  - J. J. Karimov
TI  - The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 343
EP  - 366
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/
LA  - ru
ID  - VUU_2020_30_3_a0
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%A J. J. Karimov
%T The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 343-366
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/
%G ru
%F VUU_2020_30_3_a0
A. A. Dzhalilov; J. J. Karimov. The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 3, pp. 343-366. http://geodesic.mathdoc.fr/item/VUU_2020_30_3_a0/