Mots-clés : singular coefficient
@article{VUU_2020_30_2_a9,
author = {A. K. Urinov and Mamanazarov A.O.},
title = {Unique solvability of a nonlocal problem with shift for a parabolic-hyperbolic equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {270--289},
year = {2020},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a9/}
}
TY - JOUR AU - A. K. Urinov AU - Mamanazarov A.O. TI - Unique solvability of a nonlocal problem with shift for a parabolic-hyperbolic equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 270 EP - 289 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a9/ LA - ru ID - VUU_2020_30_2_a9 ER -
%0 Journal Article %A A. K. Urinov %A Mamanazarov A.O. %T Unique solvability of a nonlocal problem with shift for a parabolic-hyperbolic equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 270-289 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a9/ %G ru %F VUU_2020_30_2_a9
A. K. Urinov; Mamanazarov A.O. Unique solvability of a nonlocal problem with shift for a parabolic-hyperbolic equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 270-289. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a9/
[1] Nakhushev A. M., “Certain boundary value problems for hyperbolic equations and equations of mixed type”, Differ. Uranv., 5:1 (1969), 44–59 (in Russian) | MR | Zbl
[2] Zhegalov V. I., “A boundary-value problem for an equation of mixed type with boundary conditions on both characteristics and with discontinuities on the transition curve”, Uchenye Zapiski Kazanskogo Universiteta, 122, no. 3, 1962, 3–16 (in Russian) | Zbl
[3] Nakhushev A. M., Offset problems for partial differential equations, Nauka, M., 2006
[4] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, Gordon and Breach, New York, 1993 | MR | Zbl
[5] Bateman H., Erdélyi A., Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953
[6] Chorieva S. T., “About one problem with bias on internal characteristics”, Uzbek Math. J., 2015, no. 4, 171–178 (in Russian) | MR
[7] Mirsaburov M., Chorieva S. T., “A problem with an analog of Frankl condition on the characteristics for Gellerstedt equation with singular coefficient”, Russian Mathematics, 61:11 (2017), 34–39 | DOI | MR | Zbl
[8] Khan M. R., “A nonlocal problem for the Lavrent'ev–Bitsadze equation”, Differ. Uravn., 20:4 (1984), 710–711 (in Russian) | MR | Zbl
[9] Repin O. A., Kumykova S. K., “Interior-boundary value problem with Saigo operators for the Gellerstedt equation”, Differential Equations, 49:10 (2013), 1307–1316 | DOI | MR | Zbl
[10] Repin O. A., Kumykova S. K., “Problem with shift for the third-order equation with discontinuous coefficients”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 2012, no. 4(29), 17–25 (in Russian) | DOI | Zbl
[11] Kozhanov A. I., Pul'kina L. S., “On the solvability of some boundary value problems with shift for linear hyperbolic equations”, Matematicheskii Zhurnal, Almaty, 9:2(32) (2009), 78–92 (in Russian)
[12] Sabitov K. B., Egorova I. P., “On the correctness of boundary value problems for the mixed type equation of the second kind”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 23:3 (2019), 430–451 (in Russian) | DOI | Zbl
[13] Ionkin N. I., Moiseev T. E., “Solution to Gellerstedt's problem with nonlocal boundary conditions”, Doklady Mathematics, 71:1 (2005), 101–104 | MR
[14] Sadybekov M. A., Dildabek G., Ivanova M. B., “Spectral properties of a Frankl type problem for parabolic-hyperbolic equations”, Electronic Journal of Differential Equations, 2018:65 (2018), 1–11 https://ejde.math.txstate.edu/Volumes/2018/65/sadybekov.pdf
[15] Khubiev K. U., “On a non-local problem for mixed hyperbolic-parabolic equations”, Mathematical Notes of NEFU, 24:3 (2017), 12–18 (in Russian) | DOI | Zbl
[16] Khubiev K. U., “Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:1 (2018), 82–90 (in Russian) | DOI | MR | Zbl
[17] Eleev V. A., Kumykova S. K., “On some boundary-value problems with a shift on characteristics for a mixed equation of hyperbolic-parabolic type”, Ukrainian Mathematical Journal, 52:5 (2000), 809–820 | DOI | MR | Zbl
[18] Urinov A. K., Khalilov K. S., “Problems with nonlocal conditions for a parabolic-hyperbolic equation”, Doklady Akademii Nauk Respubliki Uzbekistan, 2014, no. 5, 8–10 (in Russian)
[19] Salakhitdinov M. S., Islamov N. B., “A nonlocal boundary-value problem with the Bitsadze–Samarskii conditon for a parabolic-hyperbolic equation of the second kind”, Russian Mathematics, 59:6 (2015), 34–42 | DOI | MR | Zbl
[20] Sidorov S. N., “Nonlocal problems for an equation of mixed parabolic-hyperbolic type with power degeneration”, Russian Mathematics, 59:12 (2015), 46–55 | DOI | MR | Zbl
[21] Salakhitdinov M. S., Urinov A. K., Boundary value problems for mixed type equations with spectral parameters, Fan, Tashkent, 1997 | MR
[22] Bateman G., Erdélyi A., Higher transcendental functions, v. 2, McGraw–Hill, New York, 1953
[23] Urinov A. K., Khalilov K. S., “Some non-classical problems for one class of parabolic-hyperbolic equations”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 16:4 (2014), 42–49 (in Russian)
[24] Mamanazarov A. O., “Nonlocal problem for one parabolic-hyperbolic equation”, Byulleten' Instituta Matematiki, 2018, no. 6, 25–31 (in Russian)
[25] Mamanazarov A. O., “On a problem with shift for a parabolic-hyperbolic equation”, Byulleten' Instituta Matematiki, 2019, no. 2, 7–16 (in Russian)
[26] Polyanin A. D., Handbook of linear equations in mathematical physics, Fizmatlit, M., 2001
[27] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968 | MR