@article{VUU_2020_30_2_a6,
author = {L. I. Mammadova and I. M. Nabiev},
title = {Spectral properties of the {Sturm{\textendash}Liouville} operator with a spectral parameter quadratically included in the boundary condition},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {237--248},
year = {2020},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/}
}
TY - JOUR AU - L. I. Mammadova AU - I. M. Nabiev TI - Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 237 EP - 248 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/ LA - ru ID - VUU_2020_30_2_a6 ER -
%0 Journal Article %A L. I. Mammadova %A I. M. Nabiev %T Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 237-248 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/ %G ru %F VUU_2020_30_2_a6
L. I. Mammadova; I. M. Nabiev. Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 237-248. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/
[1] Collatz L., Eigenwertaufgaben mit technischen Anwendungen, Geest Portig, Leipzig, 1963 | MR
[2] Akhtyamov A. M., Identification theory of boundary value problems and its applications, Fizmatlit, M., 2009
[3] M{ö}ller M., Pivovarchik V., Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Birkh{ä}user, Cham, 2015 | DOI | MR
[4] Kerimov N. B., Mamedov Kh. R., “On one boundary value problem with a spectral parameter in the boundary conditions”, Siberian Mathematical Journal, 40:2 (1999), 281–290 | DOI | MR | Zbl
[5] Atkin A. E., Atkina G. P., “A uniqueness theorem for Sturm–Liouville equations with a spectral parameter rationally contained in the boundary condition”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya Matematika, 4:3 (2011), 158–170 (in Russian)
[6] Aliev Z. S., Dun'yamalieva A. A., “Defect basis property of a system of root functions of a Sturm–Liouville problem with spectral parameter in the boundary conditions”, Differential Equations, 51:10 (2015), 1249–1266 | DOI | DOI | MR | Zbl
[7] Shukurov A. Sh., “On the number of non-real eigenvalues of the Sturm–Liouville problem”, Eurasian Math. J., 8:3 (2017), 77–84 | MR | Zbl
[8] Shkalikov A. A., “Basis properties of root functions of differential operators with spectral parameter in the boundary conditions”, Differential Equations, 55:5 (2019), 631–643 | DOI | DOI | MR | Zbl
[9] Guliyev N. J., “Schr{ö}dinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter”, Journal of Mathematical Physics, 60:6 (2019), 063501 | DOI | MR | Zbl
[10] Megraliev Ya. T., Velieva B. K., “Inverse boundary value problem for the linearized Benney–Luke equation with nonlocal conditions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 166–182 (in Russian) | DOI | MR | Zbl
[11] Marchenko V. A., Sturm–Liouville operators and their applications, Naukova Dumka, Kiev, 1977 | MR
[12] Plaksina O. A., “Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions”, Mathematics of the USSR — Sbornik, 59:1 (1988), 1–23 | DOI | MR | Zbl | Zbl
[13] Guseinov I. M., Nabiev I. M., “Solution of a class of inverse boundary-value Sturm–Liouville problems”, Sbornik: Mathematics, 186:5 (1995), 661–674 | DOI | MR | Zbl
[14] Nabiev I. M., “Multiplicities and relative position of eigenvalues of a quadratic pencil of Sturm–Liouville operators”, Mathematical Notes, 67:3 (2000), 309–319 | DOI | DOI | MR | Zbl
[15] Djakov P., Mityagin B. S., “Instability zones of periodic 1-dimentional Schr{ö}dinger and Dirac operators”, Russian Mathematical Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl
[16] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., “The inverse Sturm–Liouville problem with generalized periodic boundary conditions”, Doklady Mathematics, 78:1 (2008), 582–584 | DOI | MR | Zbl
[17] Yurko V., “An inverse spectral problem for non-selfadjoint Sturm–Liouville operators with nonseparated boundary conditions”, Tamkang Journal of Mathematics, 43:2 (2012), 289–299 | DOI | MR | Zbl
[18] Nabiev I. M., “Determination of the diffusion operator on an interval”, Colloquium Mathematicum, 134:2 (2014), 165–178 | DOI | MR | Zbl
[19] Baskakov A. G., Polyakov D. M., “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sbornik: Mathematics, 208:1 (2017), 1–43 | DOI | DOI | MR | Zbl
[20] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., “Inverse problem for an operator pencil with nonseparated boundary conditions”, Doklady Mathematics, 79:2 (2009), 169–171 | DOI | MR | Zbl
[21] Yurko V., “Inverse problems for non-selfadjoint quasi-periodic differential pencils”, Analysis and Mathematical Physics, 2 (2012), 215–230 | DOI | MR | Zbl
[22] Nabiev I. M., Shukurov A. Sh., “Properties of the spectrum and uniqueness of reconstruction of Sturm–Liouville operator with a spectral parameter in the boundary condition”, Proceedings of the Institute of Mathematics and Mechanics, 40, Special issue (2014), 332–341 http://proc.imm.az/volumes/40-s/40-s-29.pdf | MR | Zbl
[23] Ibadzadeh Ch. G., Mammadova L. I., Nabiev I. M., “Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition”, Azerbaijan Journal of Mathematics, 9:1 (2019), 171–189 http://azjm.org/volumes/0901/pdf/11.pdf | MR | Zbl
[24] Levin B. Ya., Entire functions, Moscow State University, M., 1971 | MR
[25] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lectures on the theory of functions of a complex variable, Nauka, M., 1982