Spectral properties of the Sturm--Liouville operator with a spectral parameter quadratically included in the boundary condition
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 237-248
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the Sturm–Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.
Keywords:
Sturm-Liouville operator, non-separated boundary conditions, eigenvalues, infinite product.
@article{VUU_2020_30_2_a6,
author = {L. I. Mammadova and I. M. Nabiev},
title = {Spectral properties of the {Sturm--Liouville} operator with a spectral parameter quadratically included in the boundary condition},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {237--248},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/}
}
TY - JOUR AU - L. I. Mammadova AU - I. M. Nabiev TI - Spectral properties of the Sturm--Liouville operator with a spectral parameter quadratically included in the boundary condition JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 237 EP - 248 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/ LA - ru ID - VUU_2020_30_2_a6 ER -
%0 Journal Article %A L. I. Mammadova %A I. M. Nabiev %T Spectral properties of the Sturm--Liouville operator with a spectral parameter quadratically included in the boundary condition %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 237-248 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/ %G ru %F VUU_2020_30_2_a6
L. I. Mammadova; I. M. Nabiev. Spectral properties of the Sturm--Liouville operator with a spectral parameter quadratically included in the boundary condition. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 237-248. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a6/