Mots-clés : Germeier convolution
@article{VUU_2020_30_2_a3,
author = {V. I. Zhukovskiy and L. V. Zhukovskaya and K. N. Kudryavtsev and M. Larbani},
title = {Strong coalitional equilibria in games under uncertainty},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {189--207},
year = {2020},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a3/}
}
TY - JOUR AU - V. I. Zhukovskiy AU - L. V. Zhukovskaya AU - K. N. Kudryavtsev AU - M. Larbani TI - Strong coalitional equilibria in games under uncertainty JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 189 EP - 207 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a3/ LA - en ID - VUU_2020_30_2_a3 ER -
%0 Journal Article %A V. I. Zhukovskiy %A L. V. Zhukovskaya %A K. N. Kudryavtsev %A M. Larbani %T Strong coalitional equilibria in games under uncertainty %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 189-207 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a3/ %G en %F VUU_2020_30_2_a3
V. I. Zhukovskiy; L. V. Zhukovskaya; K. N. Kudryavtsev; M. Larbani. Strong coalitional equilibria in games under uncertainty. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a3/
[1] Nash J., “Equillibrium points in $n$-person games”, Proc. Nat. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl
[2] Nash J., “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl
[3] Gillies D. B., “Solutions to general non-zero-sum games”, Contributions to the Theory of Games (AM-40), 4, Princeton University Press, Princeton, 1959, 47–86 | DOI | MR
[4] Chwe M. S.-Y., “Farsighted coalitional stability”, Journal of Economic Theory, 63:2 (1994), 299–325 | DOI | MR | Zbl
[5] Mariotti M., “A model of agreement in strategic form games”, Journal of Economic Theory, 74:1 (1997), 196–217 | DOI | MR | Zbl
[6] Kornishi H., Ray D., “Coalition formation as a dynamic process”, Journal of Economic Theory, 110:1 (2003), 1–41 | DOI | MR
[7] Ray D., Vohra R., “Equilibrium binding agreements”, Journal of Economic Theory, 73:1 (1997), 30–78 | DOI | MR | Zbl
[8] Aumann R. J., “Acceptable points in general cooperative $n$-person games”, Contributions to the Theory of Games (AM-40), 4, Princeton University Press, Princeton, 1959, 287–324 | DOI | MR
[9] Aumann R. J., “The core of a cooperative game without side payments”, Transactions of the American Mathematical Society, 98:3 (1961), 539–552 | DOI | MR | Zbl
[10] Berge C., Théorie générale des jeux à $n$ personnes, Gauthier-Villar, Paris, 1957 http://eudml.org/doc/192658 | MR
[11] Zhukovskiy V. I., “Some problems of non-antagonistic differential games”, Mathematical Methods in Operations Research, Bulgarian Academy of Sciences, Sofia, 1985, 103–195
[12] Zhukovskiy V. I., Larbani M., “Alliance in three person games”, Researches in Mathematics and Mechanics, 22:1(29) (2017), 115–129 | DOI
[13] Sally D., “Conversation and cooperation in social dilemmas: A meta-analysis of experiments from 1958 to 1992”, Rationality and Society, 7:1 (1995), 58–92 | DOI
[14] Kahneman D., Knetsch J. L., Thaler R. H., “Fairness and the assumptions of economics”, The Journal of Business, 59:4-2 (1986), 285–300 | DOI
[15] Fehr E., Schmidt K. M., “The economics of fairness, reciprocity and altruism: Experimental evidence and new theories”, Handbook of the Economics of Giving, Altruism and Reciprocity, v. 1, 2006, 615–691 | DOI
[16] Engel C., “Dictator games: A meta study”, Experimental Economics, 14:4 (2011), 583–610 | DOI
[17] Bernheim B. D., Peleg B., Whinston M. D., “Coalition-proof Nash equilibria I. Concepts”, Journal of Economic Theory, 42:1 (1987), 1–12 | DOI | MR | Zbl
[18] Zhao J., “The hybrid solutions of an $N$-person game”, Games and Economic Behavior, 4:1 (1992), 145–160 | DOI | MR | Zbl
[19] Larbani M., Nessah R., “Sur l'équilibre fort selon Berge”, RAIRO - Operations Research, 35:4 (2001), 439–451 | DOI | MR | Zbl
[20] Nessah R., Larbani M., Tazdait T., “A note on Berge equilibrium”, Applied Mathematics Letters, 20:8 (2007), 926–932 | DOI | MR | Zbl
[21] Zhao J., “A cooperative analysis of covert collusion in oligopolistic industries”, International Journal of Game Theory, 26:2 (1997), 249–266 | DOI | MR | Zbl
[22] Scarf H. E., “On the existence of a cooperative solution for a general $n$-person game”, Journal of Economc Theory, 3:2 (1971), 169–181 | DOI | MR
[23] Luce R. D., Raiffa H., Games and decisions, John Wiley, New York, 1957 | MR | Zbl
[24] Wald A., Statistical decision functions, John Wiley, New York, 1950 | MR | Zbl
[25] Savage L. J., The foundations of statistics, John Wiley, New York, 1954 | MR | Zbl
[26] Zhukovskiy V. I., Kudryavtsev K. N., “Pareto-optimal Nash equilibrium: Sufficient conditions and existence in mixed strategies”, Automation and Remote Control, 77:8 (2016), 1500–1510 | DOI | MR
[27] Germeier Yu. B., Non-antagonistic games, Springer, Boston, 1986 | MR
[28] Borel E., “La théorie du jeu et les equations intégrales à noyau symétrique”, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 173 (1921), 1304–1308 | Zbl
[29] von Neumann J., “Zur theorie der gesellschaftsspiele”, Mathematische Annalen, 100:1 (1928), 295–320 | DOI | MR | Zbl
[30] Berge C., Espace topologiques, Dunod, Paris, 1963 | MR
[31] Morozov V. V., Sukharev A. G., Fedorov V. V., Operational research in problems and exercises, URSS, M., 2016
[32] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proceedings of the American Mathematical Society, 3:1 (1952), 170–174 | DOI | MR
[33] Zhukovskiy V. I., Kudryavtsev K. N., “Mathematical foundations of the Golden Rule. I. Static case”, Automation and Remote Control, 78:10 (2017), 1920–1940 | DOI | MR | Zbl
[34] Larbani M., Zhukovskiy V. I., “Berge equilibrium in normal form static games: a literature review”, Izvestia Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49 (2017), 80–110 | DOI | MR | Zbl