@article{VUU_2020_30_2_a2,
author = {H. Guebbai and S. Lemita and S. Segni and W. Merchela},
title = {Difference derivative for an integro-differential nonlinear {Volterra} equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {176--188},
year = {2020},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a2/}
}
TY - JOUR AU - H. Guebbai AU - S. Lemita AU - S. Segni AU - W. Merchela TI - Difference derivative for an integro-differential nonlinear Volterra equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 176 EP - 188 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a2/ LA - en ID - VUU_2020_30_2_a2 ER -
%0 Journal Article %A H. Guebbai %A S. Lemita %A S. Segni %A W. Merchela %T Difference derivative for an integro-differential nonlinear Volterra equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 176-188 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a2/ %G en %F VUU_2020_30_2_a2
H. Guebbai; S. Lemita; S. Segni; W. Merchela. Difference derivative for an integro-differential nonlinear Volterra equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 176-188. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a2/
[1] Linz P., Analytical and numerical methods for Volterra equations, Society for Industrial and Applied Mathematics, 1985 | DOI | MR | Zbl
[2] Dareiotis K., “On finite difference schemes for partial integro-differential equations of Lévy type”, Journal of Computational and Applied Mathematics, 368 (2020), 112587 | DOI | MR | Zbl
[3] Behera S., Saha Ray S., “An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations”, Applied Mathematics and Computation, 367 (2020), 124771 | DOI | MR | Zbl
[4] Rajagopal N., Balaji S., Seethalakshmi R., Balaji V. S., “A new numerical method for fractional order Volterra integro-differential equations”, Ain Shams Engineering Journal, 11:1 (2020), 171–177 | DOI
[5] Xu D., “Analytical and numerical solutions of a class of nonlinear integro-differential equations with $L^1$ kernels”, Nonlinear Analysis: Real World Applications, 51 (2020), 103002 | DOI | MR | Zbl
[6] Sato T., “Sur l'équation intégrale non linéaire de Volterra”, Compositio Mathematica, 11 (1953), 271–290 http://www.numdam.org/item/?id=CM_1953__11__271_0 | MR | Zbl
[7] Atkinson K., Han W., Theoretical numerical analysis: A functional analysis framework, Springer, New York, 2009 | DOI | MR | Zbl
[8] Brunner H., “The numerical treatment of Volterra integro-differential equations with unbounded delay”, Journal of Computational and Applied Mathematics, 28 (1989), 5–23 | DOI | MR | Zbl
[9] Pachpatte B. G., “On higher order Volterra–Fredholm integro-differential equation”, Fasciculi Mathematici, 2007, no. 37, 35–48 http://www.math.put.poznan.pl/artykuly/FM37_Pachpatte-wyd02.pdf | MR | Zbl
[10] Guebbai H., Aissaoui M. Z., Debbar I., Khalla B., “Analytical and numerical study for an integro-differential nonlinear Volterra equation”, Applied Mathematics and Computation, 229 (2014), 367–373 | DOI | MR | Zbl
[11] Segni S., Ghiat M., Guebbai H., “New approximation method for Volterra nonlinear integro-differential equation”, Asian-European Journal of Mathematics, 12:1 (2019), 1950016 | DOI | MR | Zbl
[12] Ghiat M., Guebbai H., “Analytical and numerical study for an integro-differential nonlinear Volterra equation with weakly singular kernel”, Computational and Applied Mathematics, 37:4 (2018), 4661–4674 | DOI | MR | Zbl
[13] Pachpatte B. G., “On Fredholm type integrodifferential equation”, Tamkang Journal of Mathematics, 39:1 (2008), 85–94 | DOI | MR | Zbl