Ultrafilters as admissible generalized elements under asymptotic constraints
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 312-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of compliance with constraints of asymptotic nature (CAN) and its expansion in the class of ultrafilters (u/f) of widely understood measurable space are considered. The representation of a set of admissible generalized elements as an attraction set (AS) corresponding to the given system of CAN is investigated. In particular, the question about non-emptiness of the given AS under very general suppositions with respect to measurable structure for which corresponding u/f are defined, is investigated. The above-mentioned measurable structure is defined as a $\pi$-system with “zero” and “unit” ($\pi$-system is a nonempty family of sets closed with respect to finite intersections). The u/f family is equipped with topology of Wallman type.
Keywords: attraction set, topological space, ultrafilter.
@article{VUU_2020_30_2_a11,
     author = {A. G. Chentsov},
     title = {Ultrafilters as admissible generalized elements under asymptotic constraints},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {312--323},
     year = {2020},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a11/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters as admissible generalized elements under asymptotic constraints
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 312
EP  - 323
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a11/
LA  - ru
ID  - VUU_2020_30_2_a11
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters as admissible generalized elements under asymptotic constraints
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 312-323
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a11/
%G ru
%F VUU_2020_30_2_a11
A. G. Chentsov. Ultrafilters as admissible generalized elements under asymptotic constraints. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 312-323. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a11/

[1] Krasovskii N. N., Motion control theory, Nauka, M., 1968

[2] Panasyuk A. I., Panasyuk V. I., The asymptotic magistral optimization of the controllable systems, Nauka i Tekhnika, Minsk, 1986 | MR

[3] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1977 | MR

[4] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 113–142 (in Russian) | DOI | Zbl

[5] Chentsov A. G., “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 296, suppl. 1 (2016), 102–118 | DOI | MR

[6] Engelking R., General topology, PWN, Warsaw, 1977 | MR | MR | Zbl

[7] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | MR

[8] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005

[9] Neve Zh., Mathematical foundations of probability theory, Mir, M., 1969

[10] Chentsov A. G., “To question about realization of attraction elements in abstract attainability problems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 212–229 (in Russian) | DOI | Zbl

[11] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 2, 2019, 240–257 (in Russian) | DOI

[12] Chentsov A. G., “Some properties of ultrafilters of widely understood measurable spaces”, Doklady Akademii Nauk, 486:1 (2019), 24–29 (in Russian) | DOI | Zbl

[13] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Elsevier, 2005 | MR | Zbl

[14] Chentsov A. G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl

[15] Bourbaki N., Topologie generale, Hermann, Paris, 1961

[16] Chentsov A. G., Pytkeev E. G., “Constraints of asymptotic nature and attainability problem”, Vestnik Udmurtskogo universiteta. Matematika. Mehanika. Komp'yuternye Nauki, 29:4 (2019), 569–582 | DOI

[17] Chentsov A. G., “Tier mappings and ultrafilter-based transformations”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 18, no. 4, 2012, 298–314