Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 147-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors classified a locally conformal almost cosympleсtic manifold ($\mathcal{LCAC_{S}}$-manifold) according to the conharmonic curvature tensor. In particular, they have determined the necessary conditions for a conharmonic curvature tensor on the $\mathcal{LCAC_{S}}$-manifold of classes $ CT_{i}$, $i=1,2,3 $ to be $ \Phi $-quaisi invariant. Moreover, it has been proved that any $\mathcal{LCAC_{S}}$-manifold of the class $ CT_{1} $ is conharmoniclly $ \Phi $-paracontact.
Keywords: locally conformal almost cosymplectic manifold, conharmonic curvature tensor, conharmonically $\Phi$-paracontact.
Mots-clés : $\Phi$-quaisi invariant
@article{VUU_2020_30_2_a0,
     author = {F. H. Al-Hussaini and Kh. M. Abood},
     title = {Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {147--157},
     year = {2020},
     volume = {30},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a0/}
}
TY  - JOUR
AU  - F. H. Al-Hussaini
AU  - Kh. M. Abood
TI  - Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 147
EP  - 157
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a0/
LA  - en
ID  - VUU_2020_30_2_a0
ER  - 
%0 Journal Article
%A F. H. Al-Hussaini
%A Kh. M. Abood
%T Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 147-157
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a0/
%G en
%F VUU_2020_30_2_a0
F. H. Al-Hussaini; Kh. M. Abood. Quaisi invariant conharmonic tensor of special classes of locally conformal almost cosymplectic manifold. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 2, pp. 147-157. http://geodesic.mathdoc.fr/item/VUU_2020_30_2_a0/

[1] Abood H. M., Al-Hussaini F. H., “Locally conformal almost cosymplectic manifold of $\Phi$-holomorphic sectional conharmonic curvature tensor”, European Journal of Pure and Applied Mathematics, 11:3 (2018), 671–681 | DOI | MR | Zbl

[2] Abood H. M., Al-Hussaini F. H., “Constant curvature of a locally conformal almost cosymplectic manifold”, AIP Conference Proceedings, 2086:1 (2019), 030003 | DOI

[3] Abood H. M., Al-Hussaini F. H., “On the conharmonic curvature tensor of a locally conformal almost cosymplectic manifold”, Communications of the Korean Mathematical Society, 35:1 (2020), 269–278 | DOI | MR | Zbl

[4] Asghari N., Taleshian A., “On the conharmonic curvature tensor of Kenmotsu manifolds”, Thai Journal of Mathematics, 12:3 (2014), 525–536 http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/410 | MR | Zbl

[5] Blair D. E., “The theory of quasi-Sasakian structures”, Journal of Differential Geometry, 1:3–4 (1967), 331–345 | DOI | MR | Zbl

[6] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Birkh{ä}user, Boston, MA, 2010 | DOI | MR | Zbl

[7] Cartan E., Riemannian geometry in an orthogonal frame, World Scientific, Singapore, 2001 | MR

[8] Chanyal S. K., Upreti J., “Conharmonic curvature tensor on $(\kappa,\mu)$-contact metric manifold”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.), 2:F2 (2016), 681–694 https://www.math.uaic.ro/ãnnalsmath/new/?page_id=351 | MR | Zbl

[9] Chinea D., Marrero J. C., “Classification of almost contact metric structures”, Revue Roumaine de Mathématiques Pures et Appliquées, 37:3 (1992), 199–211 | MR | Zbl

[10] Dwivedi M. K., Kim J.-S., “On conharmonic curvature tensor in $ K $-contact and Sasakian manifolds”, Bulletin of the Malaysian Mathematical Sciences Society. Second Series, 34:1 (2011), 171–180 | MR

[11] Ghosh S., De U. C., Taleshian A., “Conharmonic curvature tensor on $ N(K) $-contact metric manifolds”, ISRN Geometry, 2011 (2011), 423798, 11 pp. | DOI | MR | Zbl

[12] Goldberg S. I., Yano K., “Integrabilty of almost cosymplectic structures”, Pacific Journal of Mathematics, 31:2 (1969), 373–382 | DOI | MR | Zbl

[13] Ishii Y., “On conharmonic transformation”, Tensor, New Ser., 7, 1957, 73–80 | MR | Zbl

[14] Kharitonova S. V., “On the geometry of locally conformal almost cosymplectic manifolds”, Mathematical Notes, 86:1 (2009), 121–131 | DOI | MR | Zbl

[15] Kirichenko V. F., Differential-geometric structures on manifolds, Pechatnyi Dom, Odessa, 2013

[16] Kirichenko V. F., Rustanov A. R., “Differential geometry of quasi Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 1173–1201 | DOI | MR | Zbl

[17] Olszak Z., “Locally conformal almost cosymplectic manifolds”, Colloquium Mathematicum, 57:1 (1989), 73–87 | DOI | MR | Zbl

[18] Taleshian A., Prakasha D. G., Vikas K., Asghari N., “On the conharmonic curvature tensor of $ LP $-Sasakian manifolds”, Palestine Journal of Mathematics, 5:1 (2016), 177–184 | MR | Zbl

[19] Volkova E. S., “Curvature identities of normal manifolds of Killing type”, Mathematical Notes, 62:3 (1997), 296–305 | DOI | MR | Zbl