Mots-clés : interface
@article{VUU_2020_30_1_a9,
author = {K. B. Tsiberkin},
title = {On the porosity influence on stability of flow over porous medium},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {134--144},
year = {2020},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a9/}
}
TY - JOUR AU - K. B. Tsiberkin TI - On the porosity influence on stability of flow over porous medium JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 134 EP - 144 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a9/ LA - ru ID - VUU_2020_30_1_a9 ER -
K. B. Tsiberkin. On the porosity influence on stability of flow over porous medium. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 134-144. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a9/
[1] Ghisalberti M., Nepf H., “The structure of the shear layer in flows over rigid and flexible canopies”, Environ. Fluid Mech., 6:3 (2006), 277–301 | DOI
[2] le Bars M., Worster M. G., “Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification”, J. Fluid Mech., 550 (2006), 149–173 | DOI | MR | Zbl
[3] Kolchanova E. A., Lyubimov D. V., Lyubimova T. P., “The onset and nonlinear regimes of convection in a two-layer system of fluid and porous medium saturated by the fluid”, Transport Porous Med., 97:1 (2013), 25–42 | DOI | MR
[4] Li Q., Hu P., “Analytical solutions of fluid flow and heat transfer in a partial porous channel with stress jump and continuity interface conditions using LTNE model”, Int. J. Heat Mass Tran., 128 (2019), 1280–1295 | DOI
[5] Nield D. A., Bejan A., Convection in porous media, 5-th ed., Springer, New-York, 2017 | DOI | MR | Zbl
[6] Hill A. A., Straughan B., “Poiseuille flow in a fluid overlying a highly porous material”, Adv. Water Resour., 32:11 (2009), 1609–1614 | DOI | MR
[7] Berman A. S., “Laminar flow in channels with porous walls”, J. Appl. Phys., 24:9 (1953), 1232–1235 | DOI | MR | Zbl
[8] Tilton N., Cortelezzi L., “Linear stability analysis of pressure-driven flows in channels with porous walls”, J. Fluid Mech., 604 (2008), 411–445 | DOI | MR | Zbl
[9] Chen F., Chen C. F., “Onset of finger convection in a horizontal porous layer underlying a fluid layer”, J. Heat Transf., 110:2 (1988), 403–409 | DOI
[10] Govender S., “Stability of solutal convection in a rotating mushy layer solidifying from a vertical surface”, Transport Porous Med., 90:2 (2011), 393–402 | DOI | MR
[11] Lyubimova T. P., Lyubimov D. V., Baydina D. T., Kolchanova E. A., Tsiberkin K. B., “Instability of plane-parallel flow of incompressible liquid over a saturated porous medium”, Phys. Rev. E, 94:1 (2016), 013104 | DOI
[12] Camporeale C., Mantelli E., Manes C., “Interplay among unstable modes in films over permeable walls”, J. Fluid Mech., 719 (2013), 527–550 | DOI | MR | Zbl
[13] Tsiberkin K., “Effect of inertial terms on fluid-porous medium flow coupling”, Transport Porous Med., 121 (2018), 109–120 | DOI | MR
[14] Ochoa-Tapia J. A., Whitaker S., “Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development”, Int. J. Heat Mass Tran., 38 (1995), 2635–2646 | DOI | Zbl
[15] Ochoa-Tapia J. A., Whitaker S., “Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment”, Int. J. Heat Mass Tran., 38 (1995), 2647–2655 | DOI
[16] Conte S. D., “The numerical solution of linear boundary value problems”, SIAM Review., 8:3 (1966), 309–321 https://www.jstor.org/stable/2028207 | DOI | MR | Zbl
[17] Godunov S. K., “Numerical solution of boundary-value problems for systems of linear ordinary differential equations”, Uspekhi Mat. Nauk, 16:3 (99) (1961), 171–174 (in Russian) | MR | Zbl
[18] Gershuni G. Z., Zhukhovitskii E. M., Nepomnyashchii A. A., Stability of convective flows, Nauka, M., 1989 | MR