@article{VUU_2020_30_1_a7,
author = {A. V. Yudenkov and A. M. Volodchenkov},
title = {Stability of mathematical models of the main problems of the anisotropic theory of elasticity},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {112--124},
year = {2020},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a7/}
}
TY - JOUR AU - A. V. Yudenkov AU - A. M. Volodchenkov TI - Stability of mathematical models of the main problems of the anisotropic theory of elasticity JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 112 EP - 124 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a7/ LA - ru ID - VUU_2020_30_1_a7 ER -
%0 Journal Article %A A. V. Yudenkov %A A. M. Volodchenkov %T Stability of mathematical models of the main problems of the anisotropic theory of elasticity %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 112-124 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a7/ %G ru %F VUU_2020_30_1_a7
A. V. Yudenkov; A. M. Volodchenkov. Stability of mathematical models of the main problems of the anisotropic theory of elasticity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a7/
[1] Balk M. B., “Polyanalytic functions and their generalizations”, Complex Analysis I, Springer, Berlin, 1997, 195–253 | DOI | MR
[2] Vekua I. N., “On one solution of the main biharmonic boundary value problem and the Dirichlet problem”, Some problems of mathematics and mechanics, Nauka, L., 1970, 120–127
[3] Gakhov F. D., Boundary value problems, Nauka, M., 1977
[4] Lekhnitskii G. S., Elasticity theory for the anisotropic body, Nauka, M., 1977
[5] Maksimova L. A., Yudenkov A. V., “Stochastic potential theory in the two-dimensional elasticity theory”, Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State, 2015, no. 4(26), 134–142 (in Russian)
[6] Muskhelishvili N. I., Some primal problems of the mathematical theory of elasticity, Nauka, M., 1966 | MR
[7] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968 | MR
[8] Redkozubov S. A., Yudenkov A. V., Volodchenkov A. M., “Simulation of the process of linear deformation of the elastic homogeneous body through bianalytic functions”, Yakovlev Chuvash State Pedagogical University Bulletin, 2006, no. 1(49), 128–134 (in Russian)
[9] Savin G. N., Stress distribution around holes, Naukova Dumka, Kiev, 1968 https://archive.org/details/nasa_techdoc_19710000647 | MR
[10] Yudenkov A. V., Boundary value problems with drift for polyanalytic functions and their application to the static theory of elasticity, Smyadyn', Smolensk, 2002
[11] Yudenkov A. V., Volodchenkov A. M., “The primal problems of the elasticity theory for bodies with linear anisotropy in the stochastic theory of potential”, Uchenye Zapiski. Elektronnyi Nauchnyi Zhurnal Kurskogo Gosudarstvennogo Universiteta, 2013, no. 2 (26), 14–17 (in Russian)
[12] Balk M. B., Polyanalvtic functions, Akademie Verlag, Berlin, 1991 | MR
[13] Kuritsyn S. Y., Rasulov K. M., “On a generalized Riemann problem for metaanalytic functions of the second type”, Lobachevskii Journal of Mathematics, 39:1 (2018), 97–103 | DOI | MR | Zbl
[14] Rasulov K. M., “On the uniqueness of the solution of the Dirichlet boundary value problem for quasiharmonic functions in a non-unit disk”, Lobachevskii Journal of Mathematics, 39:1 (2018), 142–145 | DOI | MR | Zbl