On totally global solvability of controlled second kind operator equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the nonlinear evolutionary operator equation
of the second kind as follows
$\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$,
$\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$,
with Volterra type operators
$\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$,
$f[u]$:
$W[0;T]\to L_p\bigl([0;T];Y\bigr)$
of the general form,
a control $u\in\mathcal{D}$
and arbitrary Banach spaces $X$, $Y$.
For this equation we prove
theorems on solution uniqueness and
sufficient conditions for
totally (with respect to set $\mathcal{D}$)
global solvability.
Under natural hypotheses associated with
pointwise in $t\in[0;T]$ estimates
the conclusion on univalent totally global solvability
is made provided global solvability for
a comparison system which is some system of
functional integral equations (it could be
replaced by a system of equations of analogous type,
and in some cases, of ordinary differential equations)
with respect to unknown functions
$[0;T]\to\mathbb{R}$.
As an example we establish sufficient conditions of
univalent totally global solvability for a controlled
nonlinear nonstationary Navier–Stokes system.
Keywords:
nonlinear evolutionary operator equation of the second kind, totally global solvability, Navier–Stokes system.
@article{VUU_2020_30_1_a6,
author = {A. V. Chernov},
title = {On totally global solvability of controlled second kind operator equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {92--111},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/}
}
TY - JOUR AU - A. V. Chernov TI - On totally global solvability of controlled second kind operator equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 92 EP - 111 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/ LA - ru ID - VUU_2020_30_1_a6 ER -
%0 Journal Article %A A. V. Chernov %T On totally global solvability of controlled second kind operator equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2020 %P 92-111 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/ %G ru %F VUU_2020_30_1_a6
A. V. Chernov. On totally global solvability of controlled second kind operator equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/