On totally global solvability of controlled second kind operator equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlinear evolutionary operator equation of the second kind as follows $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, with Volterra type operators $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]$: $W[0;T]\to L_p\bigl([0;T];Y\bigr)$ of the general form, a control $u\in\mathcal{D}$ and arbitrary Banach spaces $X$, $Y$. For this equation we prove theorems on solution uniqueness and sufficient conditions for totally (with respect to set $\mathcal{D}$) global solvability. Under natural hypotheses associated with pointwise in $t\in[0;T]$ estimates the conclusion on univalent totally global solvability is made provided global solvability for a comparison system which is some system of functional integral equations (it could be replaced by a system of equations of analogous type, and in some cases, of ordinary differential equations) with respect to unknown functions $[0;T]\to\mathbb{R}$. As an example we establish sufficient conditions of univalent totally global solvability for a controlled nonlinear nonstationary Navier–Stokes system.
Keywords: nonlinear evolutionary operator equation of the second kind, totally global solvability, Navier–Stokes system.
@article{VUU_2020_30_1_a6,
     author = {A. V. Chernov},
     title = {On totally global solvability of controlled second kind operator equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {92--111},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On totally global solvability of controlled second kind operator equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 92
EP  - 111
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/
LA  - ru
ID  - VUU_2020_30_1_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On totally global solvability of controlled second kind operator equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 92-111
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/
%G ru
%F VUU_2020_30_1_a6
A. V. Chernov. On totally global solvability of controlled second kind operator equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/

[1] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | Zbl

[2] Kalantarov V. K., Ladyzhenskaya O. A., “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, Journal of Soviet Mathematics, 10:1 (1978), 53–70 | DOI | MR | Zbl

[3] Sumin V. I., “The features of gradient methods for distributed optimal control problems”, USSR Computational Mathematics and Mathematical Physics, 30:1 (1990), 1–15 | DOI | MR | Zbl

[4] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. I, Volterra equations and controlled initial boundary value problems, Nizhny Novgorod State University, Nizhny Novgorod, 1992

[5] Korpusov M. O., Sveshnikov A. G., “Blow-up of solutions to strongly nonlinear equations of the pseudoparabolic type”, Differential Equations, Sovremennaya matematika i ee prilozheniya, 40, 2006, 3–138 (in Russian)

[6] Chernov A. V., “On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator”, Russian Mathematics, 61:6 (2017), 72–81 | DOI | MR | Zbl

[7] Chernov A. V., “Preservation of the solvability of a semilinear global electric circuit equation”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 2018–2030 | DOI | DOI | MR | Zbl

[8] Sumin V. I., “The problem of global solutions existence-stability for controllable boundary-value problems and Volterra functional equations”, Vestnik Nizhegorodskogo Universiteta imeni N. I. Lobachevskogo. Matematika, 2003, no. 1, 91–107 (in Russian) | Zbl

[9] Sumin V. I., Chernov A. V., “Volterra functional-operator equations in the theory of optimization of distributed systems”, Systems Dinamics and Control Processes, SDCP-2014, Proceedings of Int. Conf. Dedicated to the 90th Anniversary of the birth of Acad. N. N. Krasovskii, “UMTS UPI” Publ., Ekaterinburg, 2015, 293–300 (in Russian)

[10] Sumin V. I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 262–278 (in Russian) | DOI

[11] Chernov A. V., “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55–65 | DOI | MR | Zbl

[12] Chernov A. V., “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 230–243 (in Russian) | DOI | Zbl

[13] Chernov A. V., “Majorant sign of the first order for totally global solvability of a controlled functional operator equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:4 (2018), 531–548 (in Russian) | DOI | MR

[14] Chernov A. V., “The total preservation of unique global solvability of the first kind operator equation with additional controlled nonlinearity”, Russian Mathematics, 62:11 (2018), 53–66 | DOI | MR | Zbl

[15] Solonnikov V. A., “Estimates for solutions of nonstationary Navier–Stokes equations”, Zapiski Nauchnykh Seminarov POMI, 38, 1973, 153–231 (in Russian) | Zbl

[16] Tikhonov A. N., “On functional equations of Volterra type and their applications to some problems of mathematical physics”, Bull. Mos. Univ. Sec. A, 1:8 (1938), 1–25 (in Russian) | Zbl

[17] Seregin G. A., “Necessary conditions of potential blow-up for Navier–Stokes equations”, Journal of Mathematical Sciences, 178:3 (2011), 345–352 | DOI | MR | Zbl

[18] Leray J., “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Mathematica, 63:1 (1934), 193–248 https://projecteuclid.org/euclid.acta/1485888078 | DOI | MR | Zbl

[19] Prodi G., “Un teorema di unicità per le equazioni di Navier–Stokes”, Annali di Matematica Pura ed Applicata, 48:4 (1959), 173–182 | DOI | MR | Zbl

[20] Kozono H., Sohr H., “Remarks on uniqueness of weak solutions to the Navier–Stokes equations”, Analysis, 16:3 (1996), 255–271 | DOI | MR | Zbl

[21] Ladyzhenskaya O. A., “Sixth problem of the millenium: Navier–Stokes equations, existence and smoothness”, Russian Mathematical Surveys, 58:2 (2003), 251–286 | DOI | DOI | MR | Zbl

[22] Saito H., “Global solvability of the Navier–Stokes equations with a free surface in the maximal regularity $L_p$–$L_q$ class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl

[23] Seregin G. A., Shilkin T. N., “Liouville-type theorems for the Navier–Stokes equations”, Russian Mathematical Surveys, 73:4 (2018), 661–724 | DOI | MR | Zbl

[24] Fursikov A. V., Optimal control of distributed systems. Theory and applications, AMS, Providence, RI, 2000 | MR | Zbl