On totally global solvability of controlled second kind operator equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the nonlinear evolutionary operator equation of the second kind as follows $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, with Volterra type operators $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]$: $W[0;T]\to L_p\bigl([0;T];Y\bigr)$ of the general form, a control $u\in\mathcal{D}$ and arbitrary Banach spaces $X$, $Y$. For this equation we prove theorems on solution uniqueness and sufficient conditions for totally (with respect to set $\mathcal{D}$) global solvability. Under natural hypotheses associated with pointwise in $t\in[0;T]$ estimates the conclusion on univalent totally global solvability is made provided global solvability for a comparison system which is some system of functional integral equations (it could be replaced by a system of equations of analogous type, and in some cases, of ordinary differential equations) with respect to unknown functions $[0;T]\to\mathbb{R}$. As an example we establish sufficient conditions of univalent totally global solvability for a controlled nonlinear nonstationary Navier–Stokes system.
Keywords: nonlinear evolutionary operator equation of the second kind, totally global solvability, Navier–Stokes system.
@article{VUU_2020_30_1_a6,
     author = {A. V. Chernov},
     title = {On totally global solvability of controlled second kind operator equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {92--111},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On totally global solvability of controlled second kind operator equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 92
EP  - 111
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/
LA  - ru
ID  - VUU_2020_30_1_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On totally global solvability of controlled second kind operator equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 92-111
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/
%G ru
%F VUU_2020_30_1_a6
A. V. Chernov. On totally global solvability of controlled second kind operator equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 92-111. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a6/