Relaxation of pursuit-evasion differential game and program absorption operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 64-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some natural relaxation of pursuit-evasion differential game. For two closed sets, which are parameters, similar guidance problem for $\varepsilon$-neighborhoods is being solved. We are interested in finding a minimal size of such neighborhoods, which allows player I successfully solve his guidance problem in the class of generalized non-anticipating strategies. To resolve above-mentioned differential game, a modification of Program Iterations Method is implemented. Size of the neighborhoods is found as a position function and it's defined by application of special iterative procedure further below. As a corollary, it is shown that desired function is a fixed point of the open-loop operator, which defines the procedure.
Keywords: pursuit-evasion differential game, program iterations method, guaranteed result.
@article{VUU_2020_30_1_a5,
     author = {A. G. Chentsov and D. M. Khachai},
     title = {Relaxation of pursuit-evasion differential game and program absorption operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {64--91},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a5/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - D. M. Khachai
TI  - Relaxation of pursuit-evasion differential game and program absorption operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 64
EP  - 91
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a5/
LA  - ru
ID  - VUU_2020_30_1_a5
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A D. M. Khachai
%T Relaxation of pursuit-evasion differential game and program absorption operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 64-91
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a5/
%G ru
%F VUU_2020_30_1_a5
A. G. Chentsov; D. M. Khachai. Relaxation of pursuit-evasion differential game and program absorption operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 64-91. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a5/

[1] Isaacs R., Differential games, Wiley, New York, 1965 | MR | Zbl

[2] Pontryagin L. S., “Linear differential games of pursuit”, Mat. Sb. (N.S.), 112 (154):3(7) (1980), 307–330 | MR | Zbl

[3] Krasovskii N. N., Game problems on the encounter of motions, Nauka, M., 1970

[4] Pshenichnii B. N., “The structure of differential games”, Soviet Math. Dokl., 184 (1969), 285–287

[5] Krasovskii N. N., Subbotin A. I., “An alternative for the game problem of convergence”, Journal of Applied Mathematics and Mechanics, 34:6 (1970), 948–965 | DOI | MR

[6] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, Berlin–Heidelberg, 1988 | MR | MR | Zbl

[7] Roxin E., “Axiomatic approach in differential games”, Journal of Optimization Theory and Applications, 3 (1969), 153 | DOI | MR | Zbl

[8] Elliott R. J., Kalton N. J., “Values in differential games”, Bull. Amer. Math. Soc., 78:3 (1972), 427–431 | DOI | MR | Zbl

[9] Chentsov A. G., “On a game problem of guidance”, Soviet Math., Doklady, 17 (1976), 73–77 | MR | Zbl

[10] Kryazimskii A. V., “On the theory of positional differential games of convergence–evasion”, Sov. Math., Dokl., 19:2 (1978), 408–412 | MR | Zbl

[11] Chistiakov S. V., “On solving pursuit game problems”, Journal of Applied Mathematics and Mechanics, 41:5 (1977), 845–852 | DOI | MR

[12] Ukhobotov V. I., “Construction of a stable bridge for a class of linear games”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 350–354 | DOI | MR

[13] Chentsov A. G., Khachai D. M., “Relaxation of a differential game of approach–evasion and iterative methods”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 4, 2018, 246–269 (in Russian) | DOI

[14] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981 | MR

[15] Chentsov A. G., “The program iteration method in a game problem of guidance”, Proceedings of the Steklov Institute of Mathematics, 297, suppl. 1 (2017), 43–61 | DOI | DOI | MR

[16] Dunford N., Schwartz J. T., Linear operators, v. I, General theory, Interscience, New York–London, 1958 | MR | Zbl

[17] Chentsov A. G., The method of program iterations for a differential approach–evasion game, Available from VINITI, No 1933-79, Sverdlovsk, 1979, 102 pp.

[18] Chentsov A. G., “Stability iterations and an evasion problem with a constraint on the number of switchings”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23, no. 2, 2017, 285–302 (in Russian) | DOI