On the group of diffeomorphisms of foliated manifolds
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Now the foliations theory is intensively developing branch of modern differential geometry, there are numerous researches on the foliation theory. The purpose of our paper is study the structure of the group $Diff_{F}(M)$ of diffeomorphisms and the group $Iso_{F}(M)$ of isometries of foliated manifold $(M,F)$. It is shown the group $Diff_{F}(M)$ is closed subgroup of the group $Diff(M)$ of diffeomorphisms of the manifold $M$ in compact-open topology and also it is proven the group $Iso_{F}(M)$ is Lie group. It is introduced new topology on $Diff_{F}(M)$ which depends on foliation $F$ and called $F$-compact open topology. It's proven that some subgroups of the group $Diff_F(M)$ are topological groups with $F$-compact open topology.
Keywords: manifold, group of diffeomorphisms, compact open topology.
Mots-clés : foliation
@article{VUU_2020_30_1_a3,
     author = {A. Ya. Narmanov and A. N. Zoyidov},
     title = {On the group of diffeomorphisms of foliated manifolds},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {49--58},
     year = {2020},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a3/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
AU  - A. N. Zoyidov
TI  - On the group of diffeomorphisms of foliated manifolds
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 49
EP  - 58
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a3/
LA  - en
ID  - VUU_2020_30_1_a3
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%A A. N. Zoyidov
%T On the group of diffeomorphisms of foliated manifolds
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 49-58
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a3/
%G en
%F VUU_2020_30_1_a3
A. Ya. Narmanov; A. N. Zoyidov. On the group of diffeomorphisms of foliated manifolds. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a3/

[1] Arnold V., “Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hidrodynamique des fluides parfaits”, Annales de l'Institut Fourier, 16 (1966), 318–361 | DOI | MR

[2] Chevalley C., Theory of Lie groups, v. I, Princeton University press, Princeton, 1966 https://archive.org/details/in.ernet.dli.2015.86469/page/n7/mode/2up

[3] Gromoll D., Klingenberg W., Meyer W., Riemannsche Geometrie im Großen, Springer, Berlin, 1968 | DOI | MR | Zbl

[4] Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press, Toronto, 1978 | MR | Zbl

[5] Hirsch M. W., Differential topology, Springer, New York, 1976 | MR | Zbl

[6] Lukatskii A. M., “Finite generation of groups of diffeomorphisms”, Russian Mathematical Surveys, 33:1 (1978), 207–261 | DOI

[7] Lukatsky A. M., “Investigation of the geodesic flow on an infinite-dimensional Lie group by means of the coadjoint action operator”, Proceedings of the Steklov Institute of Mathematics, 267 (2009), 195–204 | DOI | MR | Zbl

[8] Molino P., Riemannian foliations, Burkhauser, Boston–Basel, 1988 | MR

[9] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Annals of Mathematics. Second Series, 40:2 (1939), 400–416 | DOI | MR

[10] Narmanov A. Ya., Saitova S. S., “On geometry of vector fields”, Journal of Mathematical Sciences, 245 (2020), 375–381 | DOI | MR

[11] Narmanov A. Y., “Geometry of orbits of vector fields and singular foliations”, Contemporary Mathematics. Fundamental Directions, 65, no. 1, 2019, 54–71 (in Russian) | DOI | MR

[12] Narmanov A., Rajabov E., “On the geometry of orbits of conformal vector fields”, Journal of Geometry and Symmetry in Physics, 51 (2019), 29–39 | DOI | MR | Zbl

[13] Narmanov A., Sharipov A., “On the group of foliation isometries”, Methods of Functional Analysis and Topology, 15 (2009), 195–209 http://mfat.imath.kiev.ua/article/?id=435 | MR

[14] Narmanov A. Ya., Saitova S. S., “On the geometry of orbits of Killing vector fields”, Differential Equations, 50 (2014), 1584–1591 | DOI | MR | Zbl

[15] Omori H., “On the group of diffeomorphisms on a compact manifold”, Proc. Symp. Pure Math., 15 (1970), 167–183 | DOI | MR | Zbl

[16] Omori H., “Group of diffeomorphisms and thier subgroups”, Trans. Amer. Math. Soc., 179 (1973), 85–122 | DOI | MR | Zbl

[17] Postnikov M. M., Lectures on geometry. Semester V. Lie groups and Lie algebras, Nauka, M., 1982 https://archive.org/details/postnikovliegroups/page/n5/mode/2up | MR

[18] Rokhlin V. A., Fuks D. B., Initial course of topology. Geometrical chapters, Mir, M., 1977 | MR

[19] Tamura I., Topology of foliations: An introduction, American Mathematical Society, Providence, Rhode Island, 1992 | MR | Zbl

[20] Tondeur Ph., Foliations on Riemannian manifolds, Springer, New York, 1988 | MR | Zbl