Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 31-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies the Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Based on the completeness property of eigenfunction systems of two one-dimensional spectral problems, the uniqueness theorem is proved.To prove the existence of a solution to the problem, the Fourier spectral method based on the separation of variables is used. The solution to this problem is constructed in the form of a sum of a double Fourier–Bessel series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates were obtained for each member of the series, which made it possible to prove the convergence of the series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions.
Keywords: Keldysh problem, mixed type equation, spectral method, Bessel function.
Mots-clés : singular coefficient
@article{VUU_2020_30_1_a2,
     author = {K. T. Karimov},
     title = {Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {31--48},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a2/}
}
TY  - JOUR
AU  - K. T. Karimov
TI  - Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 31
EP  - 48
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a2/
LA  - ru
ID  - VUU_2020_30_1_a2
ER  - 
%0 Journal Article
%A K. T. Karimov
%T Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 31-48
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a2/
%G ru
%F VUU_2020_30_1_a2
K. T. Karimov. Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a2/

[1] Keldysh M. V., “On some cases of degenerate elliptic equations on the boundary of a domain”, Dokl. Akad. Nauk SSSR, 77:2 (1951), 181–183 (in Russian)

[2] Pul'kin S. P., “On uniqueness of solution of singular Hellerstedt problem”, Izv. Vyssh. Uchebn. Zaved., Mat., 1960, no. 6, 214–225 (in Russian) | MR | Zbl

[3] Vostrova L. E., Pul'kin S. P., “Singular problem with a normal derivative”, Volzhsk. Matem. Sborn., 1966, no. 5, 49–57 (in Russian) | MR | Zbl

[4] Sabitov K. B., On the theory of equations of the mixed type, Fizmatlit, M., 2014

[5] Safina R. M., “Keldysh problem for Pul'kins equation in rectangular domain”, Vestnik of Samara University. Natural Science Series, 2015, no. 3, 53–64 https://journals.ssau.ru/index.php/est/article/view/4491/43907

[6] Safina R. M., “Keldysh problem for a mixed-type equation of the second kind with the Bessel operator”, Differential Equations, 51:10 (2015), 1347–1359 | DOI | MR | Zbl

[7] Safina R. M., “Keldysh problem for mixed type equation with strong characteristic degeneration and singular coefficient”, Russian Mathematics, 61:8 (2017), 46–54 | DOI | MR | Zbl

[8] Zaitseva N. V., “Keldysh type problem for B-hyperbolic equation with integral boundary value condition of the first kind”, Lobachevskii Journal of Mathematics, 38:1 (2017), 162–169 | DOI | MR | Zbl

[9] Urinov A. K., Karimov K. T., “The unique solvability of boundary value problems for a 3D elliptic equation with three singular coefficients”, Russian Mathematics, 63:2 (2019), 62–73 | DOI | MR | Zbl

[10] Urinov A. K., Karimov K. T., “The Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients”, Actual problems of applied mathematics (Kabardino Balkar Scientific Center of the Russian Academy of Sciences, Nalchik, 2018), 253 (in Russian)

[11] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, Nauka, M., 1972 | MR

[12] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922 | MR | Zbl

[13] Olver F. W. J., Introduction to asymptotics and special functions, Academic Press, New York, 1974 | MR | Zbl

[14] Lebedev N. N., Special functions and their applications, Fizmatlit, M., 1963

[15] Urinov A. K., Karimov K. T., “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:4 (2017), 665–683 (in Russian) | DOI | MR | Zbl

[16] Tolstov G. P., Fourier Series, Nauka, M., 1980 | MR

[17] Fikhtengol'ts G. M., A course of differential and integral calculus, v. 2, Fizmatlit, M., 1963