Discrete game problem with ring-shaped terminal set
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 18-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a normed space of finite dimension a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is the opposite. In this paper, optimal controls of the players are constructed. Computer simulation of the game process is performed. A modification of the original problem, in which at an unknown time there is a change in the dynamics of the first player, is considered.
Keywords: game, control, terminal set, breakdown.
@article{VUU_2020_30_1_a1,
     author = {I. V. Izmest'ev},
     title = {Discrete game problem with ring-shaped terminal set},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {18--30},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/}
}
TY  - JOUR
AU  - I. V. Izmest'ev
TI  - Discrete game problem with ring-shaped terminal set
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2020
SP  - 18
EP  - 30
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/
LA  - ru
ID  - VUU_2020_30_1_a1
ER  - 
%0 Journal Article
%A I. V. Izmest'ev
%T Discrete game problem with ring-shaped terminal set
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2020
%P 18-30
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/
%G ru
%F VUU_2020_30_1_a1
I. V. Izmest'ev. Discrete game problem with ring-shaped terminal set. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl

[2] Propoi A. I., Elements of the theory of optimal discrete processes, Nauka, M., 1973

[3] Shorikov A. F., Minimax estimation and control in discrete-time dynamical systems, Ural Univ., Yekaterinburg, 1997

[4] Ukhobotov V. I., “Single-type differential game with terminal set in form of a ring”, Some problems of dynamic and control: Transactions, Chelyabinsk State University, Chelyabinsk, 2005, 108–123 (in Russian)

[5] Ukhobotov V. I., Izmest'ev I. V., “Single-type differential games with terminal set in form of a ring”, System dynamic and control processes, Proceedings of International Conference SDCP'2014 (Ekaterinburg, Russia, Sept. 15–20, 2014), IMM UrO RAN, Ekaterinburg, 2015, 325–332 (in Russian)

[6] Nikitina S. A., Ukhobotov V. I., “Discrete dynamic control problem with terminal set in form of ring”, Vestn. Ross. Akad. Est. Nauk, 19:2 (2019), 120–121 (in Russian)

[7] Ukhobotov V. I., Stabulit I. S., “Dynamic control problem under interference with a given set of correction momenta”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 74–81 (in Russian) | DOI | MR | Zbl

[8] Nikol'skii M. S., “The crossing problem with possible engine shutoff”, Differential Equations, 29:11 (1993), 1681–1684 | MR

[9] Ukhobotov V. I., “On a control problem under a disturbance and a possible breakdown”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 3, 2019, 265–278 (in Russian) | DOI | MR | Zbl

[10] Zhukovskii V. I., Introduction to differential games with uncertainty, MNIIPU, M., 1997

[11] Adukova N. V., Kudryavtsev K. N., “Sorger game under uncertainty: Discrete case”, Communications in Computer and Information Science, 87 (2018), 207–219 | DOI