@article{VUU_2020_30_1_a1,
author = {I. V. Izmest'ev},
title = {Discrete game problem with ring-shaped terminal set},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {18--30},
year = {2020},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/}
}
I. V. Izmest'ev. Discrete game problem with ring-shaped terminal set. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 18-30. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a1/
[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl
[2] Propoi A. I., Elements of the theory of optimal discrete processes, Nauka, M., 1973
[3] Shorikov A. F., Minimax estimation and control in discrete-time dynamical systems, Ural Univ., Yekaterinburg, 1997
[4] Ukhobotov V. I., “Single-type differential game with terminal set in form of a ring”, Some problems of dynamic and control: Transactions, Chelyabinsk State University, Chelyabinsk, 2005, 108–123 (in Russian)
[5] Ukhobotov V. I., Izmest'ev I. V., “Single-type differential games with terminal set in form of a ring”, System dynamic and control processes, Proceedings of International Conference SDCP'2014 (Ekaterinburg, Russia, Sept. 15–20, 2014), IMM UrO RAN, Ekaterinburg, 2015, 325–332 (in Russian)
[6] Nikitina S. A., Ukhobotov V. I., “Discrete dynamic control problem with terminal set in form of ring”, Vestn. Ross. Akad. Est. Nauk, 19:2 (2019), 120–121 (in Russian)
[7] Ukhobotov V. I., Stabulit I. S., “Dynamic control problem under interference with a given set of correction momenta”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 74–81 (in Russian) | DOI | MR | Zbl
[8] Nikol'skii M. S., “The crossing problem with possible engine shutoff”, Differential Equations, 29:11 (1993), 1681–1684 | MR
[9] Ukhobotov V. I., “On a control problem under a disturbance and a possible breakdown”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 3, 2019, 265–278 (in Russian) | DOI | MR | Zbl
[10] Zhukovskii V. I., Introduction to differential games with uncertainty, MNIIPU, M., 1997
[11] Adukova N. V., Kudryavtsev K. N., “Sorger game under uncertainty: Discrete case”, Communications in Computer and Information Science, 87 (2018), 207–219 | DOI