@article{VUU_2020_30_1_a0,
author = {Yu. V. Averboukh},
title = {Markov approximations of nonzero-sum differential games},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--17},
year = {2020},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a0/}
}
TY - JOUR AU - Yu. V. Averboukh TI - Markov approximations of nonzero-sum differential games JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2020 SP - 3 EP - 17 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a0/ LA - en ID - VUU_2020_30_1_a0 ER -
Yu. V. Averboukh. Markov approximations of nonzero-sum differential games. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 30 (2020) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/VUU_2020_30_1_a0/
[1] Averboukh Y., “Universal Nash equilibrium strategies for differential games”, Journal of Dynamical and Control Systems, 21:3 (2015), 329–350 | DOI | MR | Zbl
[2] Averboukh Y., “Approximate public-signal correlated equilibria for nonzero-sum differential games”, SIAM Journal on Control and Optimization, 57:1 (2019), 743–772 | DOI | MR | Zbl
[3] Başar T., Olsder G., Dynamic noncooperative game theory, SIAM, Philadelphia, 1998 | MR
[4] Bressan A., Shen W., “Semi-cooperative strategies for differential games”, International Journal of Game Theory, 32:4 (2004), 561–593 | DOI | MR | Zbl
[5] Bressan A., Shen W., “Small BV solutions of hyperbolic noncooperative differential games”, SIAM Journal on Control and Optimization, 43:1 (2004), 194–215 | DOI | MR | Zbl
[6] Cardaliaguet P., Plaskacz S., “Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game”, International Journal of Game Theory, 32:1 (2003), 33–71 | DOI | MR | Zbl
[7] Chistyakov S. V., “On coalition-free differential games”, Soviet Mathematics. Doklady, 24 (1981), 166–169 | MR | Zbl
[8] Fleming W. H., Soner H. M., Controlled Markov processes and viscosity solutions, Springer, New York, 2006 | DOI | MR | Zbl
[9] Friedman A., Differential games, Dover Publications, New York, 2013 | MR
[10] Gihman I. I., Skorohod A. V., Controlled stochastic processes, Springer, New York, 1979 | DOI | MR
[11] Hamadène S., Mannucci P., “Regularity of Nash payoffs of Markovian nonzero-sum stochastic differential games”, Stochastics, 91:5 (2019), 695–715 | DOI | MR
[12] Kleimenov A., Non-antagonistic positional differential games, Nauka, Yekaterinburg, 1993
[13] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter, Berlin, 2011 | MR | Zbl
[14] Kononenko A. F., “On equilibrium positional strategies in nonantagonistic differential games”, Soviet Mathematics. Doklady, 17 (1976), 1557–1560 | MR | Zbl
[15] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl
[16] Levy Y., “Continuous-time stochastic games of fixed duration”, Dynamic Games and Applications, 3:2 (2013), 279–312 | DOI | MR | Zbl
[17] Mannucci P., “Nonzero-sum stochastic differential games with discontinuous feedback”, SIAM Journal on Control and Optimization, 43:4, 1222–1233 | DOI | MR | Zbl
[18] Mannucci P., “Nash points for nonzero-sum stochastic differential games with separate Hamiltonians”, Dynamic Games and Applications, 4:3 (2014), 329–344 | DOI | MR | Zbl
[19] Meyer P. A., Probability and potentials, Blaisdell Publishing Company, Waltham, Mass., 1966 | MR | Zbl
[20] Tolwinski B., Haurie A., Leitman G., “Cooperative equilibria in differential games”, Journal of Mathematical Analysis and Applications, 119:1–2 (1986), 182–202 | DOI | MR | Zbl