@article{VUU_2019_29_4_a8,
author = {A. V. Borisov and A. V. Tsiganov},
title = {Influence of {Bartnett{\textendash}London} and {Einstein{\textendash}de} {Haas} effects on the motion of the nonholonomic sphere of {Routh}},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {583--598},
year = {2019},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a8/}
}
TY - JOUR AU - A. V. Borisov AU - A. V. Tsiganov TI - Influence of Bartnett–London and Einstein–de Haas effects on the motion of the nonholonomic sphere of Routh JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 583 EP - 598 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a8/ LA - ru ID - VUU_2019_29_4_a8 ER -
%0 Journal Article %A A. V. Borisov %A A. V. Tsiganov %T Influence of Bartnett–London and Einstein–de Haas effects on the motion of the nonholonomic sphere of Routh %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 583-598 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a8/ %G ru %F VUU_2019_29_4_a8
A. V. Borisov; A. V. Tsiganov. Influence of Bartnett–London and Einstein–de Haas effects on the motion of the nonholonomic sphere of Routh. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 583-598. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a8/
[1] A. M. Ampere, “Sur deux Mémoires lus par M. Ampère à l'Académie royale des Sciences”, Journal de Physique, de Chimie et d'Histoire Naturelle, 92 (1821), 160–165 | MR
[2] S. J. Barnett, “On magnetization by angular acceleration”, Science, 30:769 (1909), 413 | DOI
[3] S. J. Barnett, “Magnetization by rotation”, Physical Review, 6:4 (1915), 239–270 | DOI
[4] S. J. Barnett, “Gyromagnetic and electron-inertia effects”, Reviews of Modern Physics, 7:2 (1935), 129–166 | DOI
[5] Y. Bai, M. Svinin, M. Yamamoto, “Dynamics-based motion planning for a pendulum-actuated spherical rolling robot”, Regular and Chaotic Dynamics, 23:4 (2018), 372–388 | DOI | MR | Zbl
[6] R. Becker, G. Heller, F. Sauter, “Über die Stromverteilung in einer supraleitenden Kugel”, Zeitschrift für Physik, 85:11–12 (1933), 772–787 | DOI | Zbl
[7] I. A. Bizayev, A. V. Tsiganov, “On the Routh sphere problem”, Journal of Physics A: Mathematical and Theoretical, 46:8 (2013), 085202 | DOI | MR
[8] I. A. Bizyaev, “The inertial motion of a roller racer”, Regular and Chaotic Dynamics, 22:3 (2017), 239–247 | DOI | MR | Zbl
[9] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration”, Regular and Chaotic Dynamics, 22:8 (2017), 955–975 | DOI | MR | Zbl
[10] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “An invariant measure and the probability of a fall in the problem of an inhomogeneous disk rolling on a plane”, Regular and Chaotic Dynamics, 23:6 (2018), 665–684 | DOI | MR | Zbl
[11] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Exotic dynamics of nonholonomic roller racer with periodic control”, Regular and Chaotic Dynamics, 23:7–8 (2018), 983–994 | DOI | MR | Zbl
[12] A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Mathematical Surveys, 69:3 (2014), 481–538 | DOI | MR | Zbl
[13] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018 | MR
[14] A. V. Borisov, S. P. Kuznetsov, “Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body”, Regular and Chaotic Dynamics, 23:7–8 (2018), 803–820 | DOI | MR | Zbl
[15] A. V. Borisov, A. V. Tsiganov, “On the Chaplygin sphere in a magnetic field”, Regular and Chaotic Dynamics, 24:6 (2019), 739–754 | DOI | MR | Zbl
[16] A. A. Burov, G. I. Subkhankulov, “On the motion of a solid in a magnetic field”, Journal of Applied Mathematics and Mechanics, 50:6 (1986), 743–748 | DOI | MR | Zbl
[17] S. A. Chaplygin, “On motion of heavy rigid body of revolution on horizontal plane”, Collection of works, v. 1, OGIZ, M.–L., 1948, 57–75 | MR
[18] R. Jaafar, E. M. Chudnovsky, D. A. Garanin, “Dynamics of the Einstein-de Haas effect: Application to a magnetic cantilever”, Physical Review B, 79:10 (2009), 104410 | DOI
[19] D. A. Garanin, E. M. Chudnovsky, “Angular momentum in spin-phonon processes”, Physical Review B, 92:2 (2015), 024421 | DOI
[20] R. Cushman, “Routh's sphere”, Reports on Mathematical Physics, 42:1–2 (1998), 47–70 | DOI | MR | Zbl
[21] A. Einstein, “Experimenteller nachweis der ampèreschen molekularströme”, Naturwissenschaften, 3:19 (1915), 237–238 | DOI
[22] A. F. Hildebrandt, “Magnetic field of a rotating superconductor”, Physical Review Letters, 12:8 (1964), 190–191 | DOI
[23] J. E. Hirsch, “Moment of inertia of superconductors”, Physics Letters A, 383:1 (2019), 83–90 | DOI | Zbl
[24] S. Hu, M. Santoprete, “Suslov problem with the Clebsch-Tisserand potential”, Regular and Chaotic Dynamics, 23:2 (2018), 193–211 | DOI | MR | Zbl
[25] B. U. Felderhof, “Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid”, Physical Review E, 91:2 (2015), 023014 | DOI
[26] G. Grioli, “Moto attorno al baricentro di un giroscopio soggetto a forze di potenza nulla”, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5), 6 (1947), 439–463 | MR | Zbl
[27] G. Grioli, “Sul moto di un corpo rigido asimmetrico soggetto a forze di potenza nulla”, Rendiconti del Seminario Matematico della Università di Padova, 27 (1957), 90–102 | MR | Zbl
[28] H. Goldstein, “The classical motion of a rigid charged body in a magnetic field”, American Journal of Physics, 19:2 (1951), 100–109 | DOI | Zbl
[29] J. H. Jellet, A treatise on the theory of friction, MacMillan, London, 1872
[30] I. K. Kikoin, S. W. Gubar, “Gyromagnetic effects in super conductors”, J. Phys. USSR, 3 (1940), 333–354
[31] A. A. Kilin, E. N. Pivovarova, “The rolling motion of a truncated ball without slipping and spinning on a plane”, Regular and Chaotic Dynamics, 22:3 (2017), 298–317 | DOI | MR | Zbl
[32] A. A. Kilin, E. N. Pivovarova, “Integrable nonsmooth nonholonomic dynamics of a rubber wheel with sharp edges”, Regular and Chaotic Dynamics, 23:7–8 (2018), 887–907 | DOI | MR | Zbl
[33] G. R. Kirchhoff, “Über die bewegung eines rotationskörpers in einer flüssigkeit”, Journal fÜr die Reine und Angewandte Mathematik (Crelles Journal), 1870:71 (1870), 237–262 | DOI | MR | Zbl
[34] A. I. Kobrin, Yu. G. Martynenko, “Motion of a conducting solid body near the center of mass in a slowly varying magnetic field”, Soviet Physics Doklady, 26:12 (1981), 1134–1136 | MR | Zbl
[35] V. V. Kozlov, “Problem of the rotation of a solid body in a magnetic field”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 20:6 (1985), 28–33 (in Russian) | Zbl
[36] H. J. Kroh, B. U. Felderhof, “Force and torque on a sphere with electric dipole moment moving in a dielectric fluid in the presence of a uniform magnetic field”, Physica A: Statistical Mechanics and its Applications, 280:3–4 (2000), 256–265 | DOI
[37] S. P. Kuznetsov, “Regular and chaotic dynamics of a Chaplygin sleigh due to periodic switch of the nonholonomic constraint”, Regular and Chaotic Dynamics, 23:2 (2018), 178–192 | DOI | MR | Zbl
[38] M. Lakshmanan, “The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview”, Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 369:1939 (2011), 1280–1300 | DOI | MR | Zbl
[39] J. H. Mentink, M. I. Katsnelson, M. Lemeshko, “Quantum many-body dynamics of the Einstein-de Haas effect”, Physical Review B, 99:6 (2019), 064428 | DOI
[40] R. H. Pry, A. L. Lathrop, W. V. Houston, “Gyromagnetic effect in a superconductor”, Physical Review, 86:6 (1952), 905–907 | DOI
[41] H. A. Rowland, “Magnetic effect of electric convection”, American Journal of Science. Series 3, 15 (1878), 30–38 | DOI
[42] O. W. Richardson, “A mechanical effect accompanying magnetization”, Physical Review, 26:3 (1908), 248–253 | DOI
[43] E. J. Routh, Advanced rigid bodies dynamics, MacMillan and Co, London, 1884
[44] V. A. Samsonov, “On the rotation of a body in a magnetic field”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 19:4 (1984), 32–34 (in Russian)
[45] A. V. Tsiganov, “Bäcklund transformations for the nonholonomic Veselova system”, Regular and Chaotic Dynamics, 22:2 (2017), 163–179 | DOI | MR | Zbl
[46] A. V. Tsiganov, “Integrable discretization and deformation of the nonholonomic Chaplygin ball”, Regular and Chaotic Dynamics, 22:4 (2017), 353–367 | DOI | MR | Zbl
[47] A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, Journal of Mathematical Physics, 59:7 (2018), 072703 | DOI | MR | Zbl
[48] A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoretical and Mathematical Physics, 197:3 (2018), 1806–1822 | DOI | MR | Zbl
[49] A. V. Tsiganov, “Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane”, Regular and Chaotic Dynamics, 24:2 (2019), 171–186 | DOI | MR | Zbl
[50] G. E. Uhlenbeck, S. Goudsmit, “Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons”, Naturwissenschaften, 13:47 (1925), 953–954 | DOI | Zbl
[51] Yu. M. Urman, “Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field”, Technical Physics, 43:8 (1998), 885–889 | DOI