Constraints of asymptotic nature and attainability problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 569-582 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In control problems, construction and investigation of attainability domains and their analogs are very important. This paper addresses attainability problems in topological spaces. Constraints of asymptotic nature defined in the form of nonempty families of sets are used. The solution of the corresponding attainability problem is defined as an attraction set. Points of this attraction set (attraction elements) are realized in the class of approximate solutions which are nonsequential analogs of the Warga approximate solutions. Some possibilities of applying compactifiers are discussed. Questions of the realization of attraction sets up to a given neighborhood are considered. Some topological properties of attraction sets are investigated. An example with an empty attraction set is considered.
Keywords: attraction set, extension, topological space, compactness.
@article{VUU_2019_29_4_a7,
     author = {A. G. Chentsov and E. G. Pytkeev},
     title = {Constraints of asymptotic nature and attainability problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {569--582},
     year = {2019},
     volume = {29},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a7/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - E. G. Pytkeev
TI  - Constraints of asymptotic nature and attainability problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 569
EP  - 582
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a7/
LA  - en
ID  - VUU_2019_29_4_a7
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A E. G. Pytkeev
%T Constraints of asymptotic nature and attainability problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 569-582
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a7/
%G en
%F VUU_2019_29_4_a7
A. G. Chentsov; E. G. Pytkeev. Constraints of asymptotic nature and attainability problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 569-582. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a7/

[1] J. Warga, Optimal control of differential and functional equations, Academic Press, New York, 1977 | MR

[2] A. G. Chentsov, “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proceedings of the Steklov Institute of Mathematics, 296, Suppl. 1 (2017), 102–118 | DOI | MR

[3] A. G. Chentsov, “An abstract reachability problem: «purely asymptotic» version”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 21, no. 2, 2015, 289–305 (in Russian) | MR

[4] A. G. Chentsov, “Filters and ultrafilters in the constructions of attraction sets”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 113–142 (in Russian) | DOI | Zbl

[5] K. Kuratowski, A. Mostowski, Set theory, PWN, Warsaw, 1967 | MR

[6] R. Engelking, General topology, PWN, Warsaw, 1977 | MR | Zbl

[7] A. G. Chentsov, S. I. Morina, Extensions and relaxations, Springer, Dordrecht, 2002 | MR

[8] A. G. Chentsov, “Ultrafilters in the constructions of attraction sets: problem of compliance to constraints of asymptotic character”, Differential Equations, 47:7 (2011), 1059–1076 | DOI | MR | Zbl

[9] A. G. Chentsov, Asymptotic attainability, Springer Netherlands, Dordrecht, 1997 | DOI | MR

[10] A. G. Chentsov, A. P. Baklanov, “A problem related to asymptotic attainability in the mean”, Doklady Mathematics, 90:3 (2014), 762–765 | DOI | MR | Zbl

[11] A. G. Chentsov, A. P. Baklanov, “On an asymptotic analysis problem related to the construction of an attainability domain”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 279–298 | DOI | MR | Zbl

[12] A. G. Chentsov, A. P. Baklanov, I. I. Savenkov, “A problem of attainability with constraints of asymptotic nature”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2016, no. 1(47), 54–118 (in Russian) | MR | Zbl