Properties of exponents of oscillation of linear autonomous differential system solutions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 558-568
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous autonomous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. The spectra of the exponents of autonomous systems' oscillation are fully studied. It turned out that they directly depend on the roots of the corresponding characteristic polynomial of the system. As a consequence, spectra of all exponents of oscillation of autonomous systems with symmetric matrix are found. It is proved that they consist of a single zero value. In addition, a full description of the main values of the exponents of oscillation of such systems is given. These values for the exponents of oscillation of non-strict signs, roots and hyperroots coincided with the set of modules of imaginary parts of the system matrix's eigenvalues, and the exponents of oscillation of strict signs can consist of zero and the least, in absolute magnitude, imaginary part of the complex roots of the corresponding characteristic polynomial.
Keywords: differential equations, linear systems, number of zeros, exponents of oscillation, Lyapunov exponents.
Mots-clés : oscillation
@article{VUU_2019_29_4_a6,
     author = {A. Kh. Stash},
     title = {Properties of exponents of oscillation of linear autonomous differential system solutions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {558--568},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a6/}
}
TY  - JOUR
AU  - A. Kh. Stash
TI  - Properties of exponents of oscillation of linear autonomous differential system solutions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 558
EP  - 568
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a6/
LA  - ru
ID  - VUU_2019_29_4_a6
ER  - 
%0 Journal Article
%A A. Kh. Stash
%T Properties of exponents of oscillation of linear autonomous differential system solutions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 558-568
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a6/
%G ru
%F VUU_2019_29_4_a6
A. Kh. Stash. Properties of exponents of oscillation of linear autonomous differential system solutions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 558-568. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a6/

[1] I. N. Sergeev, “Definition and properties of characteristic frequencies of a linear equation”, Journal of Mathematical Sciences, 135:1 (2006), 2764–2793 | DOI | MR | Zbl

[2] I. N. Sergeev, “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sbornik: Mathematics, 204:1 (2013), 114–132 | DOI | DOI | MR | Zbl

[3] I. N. Sergeev, “Oscillation and wandering characteristics of solutions of a linear differential systems”, Izvestiya: Mathematics, 76:1 (2012), 139–162 | DOI | DOI | MR | Zbl

[4] I. N. Sergeev, “The complete set of relations between the oscillation, rotation and wandering indicators of solutions of differential systems”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, no. 2(46), 171–183 (in Russian) | Zbl

[5] D. S. Burlakov, S. V. Tsoii, “Coincidence of complete and vector frequencies of solutions of a linear autonomous system”, Journal of Mathematical Sciences, 210:2 (2015), 155–167 | DOI | MR | Zbl

[6] A. Kh. Stash, “Properties of full and vector frequencies of lax signs and roots of solutions of linear homogenous autonomous differential equations”, Vestnik Adygeiskogo Gosudarstvennogo Universiteta. Seriya 4: Estestvenno-Matematicheskie i Tekhnicheskie Nauki, 2015, no. 3 (166), 18–22 (in Russian) | MR

[7] A. Kh. Stash, “Properties of complete and vector sign frequencies of solutions of linear autonomous differential equations”, Differential Equations, 50:10 (2014), 1418–1422 | DOI | DOI | MR | Zbl

[8] E. E. Tyrtyshnikov, Matrix analysis and linear algebra, Fizmatlit, M., 2007