On volumes of matrix ball of third type and generalized Lie balls
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 548-557
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The third-type matrix ball and the generalized Lie ball that are connected with classical domains play a crucial role in the theory of several complex variable functions. In this paper the volumes of the third type matrix ball and the generalized Lie ball are calculated. The full volumes of these domains are necessary for finding kernels of integral formulas for these domains (kernels of Bergman, Cauchy-Szegö, Poisson etc.). In addition, it is used for the integral representation of a function holomorphic on these domains, in the mean value theorem and other important concepts. The results obtained in this article are the general case of results of Hua Lo-ken and his results in particular cases coincides with our results.
Keywords: classical domains, matrix ball of the first type, matrix balls of the second type, matrix balls of the third type, generalized Lie ball.
@article{VUU_2019_29_4_a5,
     author = {U. S. Rakhmonov and J. Sh. Abdullayev},
     title = {On volumes of matrix ball of third type and generalized {Lie} balls},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {548--557},
     year = {2019},
     volume = {29},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a5/}
}
TY  - JOUR
AU  - U. S. Rakhmonov
AU  - J. Sh. Abdullayev
TI  - On volumes of matrix ball of third type and generalized Lie balls
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 548
EP  - 557
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a5/
LA  - en
ID  - VUU_2019_29_4_a5
ER  - 
%0 Journal Article
%A U. S. Rakhmonov
%A J. Sh. Abdullayev
%T On volumes of matrix ball of third type and generalized Lie balls
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 548-557
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a5/
%G en
%F VUU_2019_29_4_a5
U. S. Rakhmonov; J. Sh. Abdullayev. On volumes of matrix ball of third type and generalized Lie balls. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 548-557. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a5/

[1] L. K. Hua, Harmonic analysis of functions of several complex variables in classical domains, Inostr. Lit., M., 1959

[2] Pyatetskii-Shapiro I. I., Geometry of classical domains and the theory of automorphic functions, Gos. Izd. Fiz. Mat. Lit., M., 1961

[3] C. L. Siegel, Automorphic functions of several complex variables, Inostr. Lit., M., 1954

[4] G. Khudayberganov, B. B. Hidirov, U. S. Rakhmonov, “Automorphisms of matrix balls”, Acta NUUz, 2010, no. 3, 205–210 (in Russian)

[5] G. Khudayberganov, A. M. Kytmanov, B. A. Shaimkulov, Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017

[6] A. Khalknazarov, “The volume of the matrix ball in the space of matrices”, Uzbek Mathematical Journal, 2012, no. 3, 135–139 (in Russian) | MR

[7] G. Kh. Khudayberganov, B. P. Otemuratov, U. S. Rakhmonov, “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics and Physics, 11:1 (2018), 40–45 | DOI | MR

[8] B. A. Shaimkulov, “On holomorphic extendability of functions from part of the Lie sphere to the Lie ball”, Siberian Mathematical Journal, 44:6 (2003), 1105–1110 | DOI | MR | Zbl

[9] G. Khudayberganov, U. S. Rakhmonov, Z. Q. Matyakubov, “Integral formulas for some matrix domains”, Topics in Several Complex Variables, AMS, 2016, 89–95 | DOI | MR | Zbl

[10] S. G. Myslivets, “On the Szegö and Poisson kernels in the convex domains in ${\mathbb C}^{n}$”, Russian Mathematics, 63:1 (2019), 35–41 | DOI | DOI | MR | Zbl

[11] U. S. Rakhmonov, “Poisson Kernel for a matrix ball of the third type”, Uzbek Mathematical Journal, 2012, no. 3, 123–125

[12] G. Khudayberganov, U. S. Rakhmonov, “The Bergman and Cauchy-Szego kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 305–310 | MR

[13] P. Lankaster, The theory of matrices, Academic Press, New York–London, 1969 | MR

[14] F. R. Gantmakher, The theory of matrices, Chelsea Publishing Company, 1977 | MR