Mots-clés : group of motions
@article{VUU_2019_29_4_a4,
author = {V. A. Kyrov},
title = {Analytical embedding of three-dimensional {Helmholtz-type} geometries},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {532--547},
year = {2019},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a4/}
}
TY - JOUR AU - V. A. Kyrov TI - Analytical embedding of three-dimensional Helmholtz-type geometries JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 532 EP - 547 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a4/ LA - ru ID - VUU_2019_29_4_a4 ER -
V. A. Kyrov. Analytical embedding of three-dimensional Helmholtz-type geometries. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 532-547. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a4/
[1] V. Kh. Lev, “Three-dimensional geometry in the theory of physical structures”, Vychislitel'nye Sistemy, 1988, no. 125, 90–103 (in Russian) | Zbl
[2] G. G. Mikhailichenko, Mathematical foundations and results of the theory of physical structures, Gorno-Altaisk State University, Gorno-Altaisk, 2016
[3] V. A. Kyrov, R. A. Bogdanova, “The groups of motions of some three-dimensional maximal mobility geometries”, Siberian Mathematical Journal, 59:2 (2018), 323–331 | DOI | DOI | MR | Zbl
[4] V. A. Kyrov, “Analytic embedding of some two-dimensional geometries of maximal mobility”, Siberian Electronic Mathematical Reports, 16 (2019), 916–937 (in Russian) | DOI | MR | Zbl
[5] G. G. Mikhailichenko, “Two-dimensional geometries”, Soviet Mathematics Doklady, 24 (1981), 346–348 | MR | Zbl
[6] D. A. Berdinsky, I. A. Taimanov, “Surfaces in three-dimensional Lie groups”, Siberian Mathematical Journal, 46:6 (2005), 1005–1019 | DOI | MR | Zbl
[7] W. P. Thurston, “Three dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bulletin of the American Mathematical Society, 6:3 (1982), 357–381 | DOI | MR
[8] V. A. Kyrov, G. G. Mikhailichenko, “The analytic method of embedding symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–672 (in Russian) | DOI | MR | Zbl
[9] V. A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Siberian Electronic Mathematical Reports, 15 (2018), 741–758 (in Russian) | DOI | MR | Zbl
[10] V. A. Kyrov, “Analytic embedding of three-dimensional simplicial geometries”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 2, 2019, 125–136 (in Russian) | DOI | MR
[11] R. A. Bogdanova, G. G. Mikhailichenko, “Derivation of an equation of phenomenological symmetry for some three-dimensional geometries”, Russian Mathematics, 62:9 (2018), 7–16 | DOI | MR | Zbl
[12] G. G. Mikhailichenko, “On group and phenomenological symmetries in geometry”, Soviet Mathematics. Doklady, 27 (1983), 325–329 | MR | Zbl
[13] G. G. Mikhailichenko, V. M. Malyshev, “Phenomenological symmetry and functional equations”, Russian Mathematics, 45:7 (2001), 75–76 | MR
[14] G. G. Mikhailichenko, “The solution of functional equations in the theory of physical structures”, Soviet Mathematics. Doklady, 13 (1972), 1377–1380 | MR | MR | Zbl
[15] A. A. Simonov, “On generalized sharply n-transitive groups”, Izvestiya: Mathematics, 78:6 (2014), 1207–1231 | DOI | DOI | MR | Zbl
[16] A. A. Simonov, “Pseudomatrix groups and physical structures”, Siberian Mathematical Journal, 56:1 (2015), 177–190 | DOI | MR | Zbl
[17] L. V. Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978
[18] G. M. Fikhtengol'ts, A course of differential and integral calculus, v. 2, Fizmatgiz, M., 1963
[19] V. P. D'yakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS Press, M., 2011
[20] L. E. El'sgol'ts, Differential equations and calculus of variations, Nauka, M., 1969