Nonlocal boundary value problems for a fractional-order convection-diffusion equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 459-482 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
Keywords: nonlocal boundary value problems, a priori estimate, nonstationary convection-diffusion equation, fractional order differential equation, fractional Caputo derivative.
@article{VUU_2019_29_4_a0,
     author = {M. Kh. Beshtokov and V. A. Vogahova},
     title = {Nonlocal boundary value problems for a fractional-order convection-diffusion equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {459--482},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
AU  - V. A. Vogahova
TI  - Nonlocal boundary value problems for a fractional-order convection-diffusion equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 459
EP  - 482
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/
LA  - ru
ID  - VUU_2019_29_4_a0
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%A V. A. Vogahova
%T Nonlocal boundary value problems for a fractional-order convection-diffusion equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 459-482
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/
%G ru
%F VUU_2019_29_4_a0
M. Kh. Beshtokov; V. A. Vogahova. Nonlocal boundary value problems for a fractional-order convection-diffusion equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 459-482. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/

[1] A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solving convection-diffusion problems, Editorial URSS, M., 1999

[2] A. M. Nakhushev, Fractional calculus and its application, Fizmatlit, M., 2003

[3] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999, 339 pp. | MR | Zbl

[4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives and some of their applications, Nauka i Tekhnika, Minsk, 1987

[5] A. N. Kochubei, “Diffusion of fractional order”, Differential Equations, 26:4 (1990), 485–492 | MR | Zbl

[6] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theoretical and Mathematical Physics, 90:3 (1992), 242–251 | DOI | MR | Zbl

[7] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numerical Algorithms, 16:3–4 (1997), 231–253 | DOI | MR | Zbl

[8] V. Goloviznin, V. Kiselev, I. Korotkin, Y. Yurkov, Some features of computing algorithms for the equations fractional diffusion, Preprint No IBRAE-2002-01, Nuclear Safety Institute RAS, M., 2002 (in Russian)

[9] V. M. Goloviznin, V. P. Kiselev, I. A. Korotkin, Computational methods for one-dimensional fractional diffusion equations, Preprint No IBRAE-2002-10, Nuclear Safety Institute RAS, M., 2002 (in Russian)

[10] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1785–1795 | DOI | MR

[11] A. A. Alikhanov, “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differential Equations, 46:5 (2010), 660–666 | DOI | MR | Zbl

[12] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, Journal of Computational Physics, 280 (2015), 424–438 | DOI | MR | Zbl

[13] M. Kh. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann?Liouville fractional derivative”, Differential Equations, 54:6 (2018), 758–774 | DOI | DOI | MR | Zbl

[14] C. M. Chen, F. Liu, V. Anh, I. Turner, “Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equations”, SIAM Journal on Scientific Computing, 32:4 (2010), 1740–1760 | DOI | MR | Zbl

[15] R. Du, W. R. Cao, Z. Z. Sun, “A compact difference scheme for the fractional diffusion-wave equation”, Applied Mathematical Modelling, 34:10 (2010), 2998–3007 | DOI | MR | Zbl

[16] G. H. Gao, Z. Z. Sun, “A compact finite difference scheme for the fractional sub-diffusion equations”, Journal of Computational Physics, 230:3 (2011), 586–595 | DOI | MR | Zbl

[17] Y. N. Zhang, Z. Z. Sun, H. W. Wu, “Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation”, SIAM Journal on Numerical Analysis, 49:6 (2011), 2302–2322 | DOI | MR | Zbl

[18] Y. Lin, C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation”, Journal of Computational Physics, 225:2 (2007), 1533–1552 | DOI | MR | Zbl

[19] Y. Lin, X. Li, C. Xu, “Finite difference/spectral approximations for the fractional cable equation”, Mathematics of Computation, 80:3 (2011), 1369–1396 | DOI | MR | Zbl

[20] X. Li, C. Xu, “A space-time spectral method for the time fractional diffusion equation”, SIAM Journal on Numerical Analysis, 47:3 (2009), 2108–2131 | DOI | MR | Zbl

[21] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21:2 (1963), 155–160 | DOI | MR

[22] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR

[23] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Soviet Mathematics. Doklady, 10 (1969), 398–400 | MR | Zbl

[24] A. I. Kozhanov, “On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation”, Differential Equations, 40:6 (2004), 815–826 | DOI | MR | Zbl

[25] M. Kh. Beshtokov, “Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients”, Computational Mathematics and Mathematical Physics, 56:10 (2016), 1763–1777 | DOI | DOI | MR | Zbl

[26] M. H. Beshtokov, “On a nonlocal boundary value problem for the third order pseudo-parabolic equation”, Computational Mathematics and Modeling, 27:1 (2016), 60–79 | DOI | MR | Zbl

[27] M. Kh. Beshtokov, “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms”, Differential Equations, 54:2 (2018), 250–267 | DOI | DOI | MR | Zbl

[28] V. A. Vodakhova, “A nonlocal problem like Bitsadze–Samarsky problem for a loaded equation with multiple characteristics”, Vestnik Kabardino-Balkarskogo Universiteta. Seriya Matematicheskie Nauki, 2008, no. 5, 26–31 (in Russian)

[29] V. A. Vodakhova, R. G. Tlupova, M. Kh. Shermetova, “Inside boundary value problem for loaded equation of the third order with multiple characteristics”, Uspekhi Sovremennogo Estestvoznaniya, 2015, no. 1, 71–75 (in Russian)

[30] V. A. Vodahova, R. G. Tlupova, F. A. Erzhibova, D. A. Bolova, “A nonlocal boundary value problem for a mixed third-order equation”, Mezhdunarodnyi Zhurnal Prikladnykh i Fundamental?nykh Issledovanii, 2016, no. 4–5, 876–879 (in Russian)

[31] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | MR | Zbl

[32] M. Kh. Beshtokov, “To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative”, Russian Mathematics, 62:10 (2018), 1–14 | DOI | MR | Zbl

[33] A. A. Samarskii, A. V. Gulin, Stability of difference schemes, Nauka, M., 1973