@article{VUU_2019_29_4_a0,
author = {M. Kh. Beshtokov and V. A. Vogahova},
title = {Nonlocal boundary value problems for a fractional-order convection-diffusion equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {459--482},
year = {2019},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/}
}
TY - JOUR AU - M. Kh. Beshtokov AU - V. A. Vogahova TI - Nonlocal boundary value problems for a fractional-order convection-diffusion equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 459 EP - 482 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/ LA - ru ID - VUU_2019_29_4_a0 ER -
%0 Journal Article %A M. Kh. Beshtokov %A V. A. Vogahova %T Nonlocal boundary value problems for a fractional-order convection-diffusion equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 459-482 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/ %G ru %F VUU_2019_29_4_a0
M. Kh. Beshtokov; V. A. Vogahova. Nonlocal boundary value problems for a fractional-order convection-diffusion equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 459-482. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a0/
[1] A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solving convection-diffusion problems, Editorial URSS, M., 1999
[2] A. M. Nakhushev, Fractional calculus and its application, Fizmatlit, M., 2003
[3] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999, 339 pp. | MR | Zbl
[4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives and some of their applications, Nauka i Tekhnika, Minsk, 1987
[5] A. N. Kochubei, “Diffusion of fractional order”, Differential Equations, 26:4 (1990), 485–492 | MR | Zbl
[6] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theoretical and Mathematical Physics, 90:3 (1992), 242–251 | DOI | MR | Zbl
[7] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numerical Algorithms, 16:3–4 (1997), 231–253 | DOI | MR | Zbl
[8] V. Goloviznin, V. Kiselev, I. Korotkin, Y. Yurkov, Some features of computing algorithms for the equations fractional diffusion, Preprint No IBRAE-2002-01, Nuclear Safety Institute RAS, M., 2002 (in Russian)
[9] V. M. Goloviznin, V. P. Kiselev, I. A. Korotkin, Computational methods for one-dimensional fractional diffusion equations, Preprint No IBRAE-2002-10, Nuclear Safety Institute RAS, M., 2002 (in Russian)
[10] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1785–1795 | DOI | MR
[11] A. A. Alikhanov, “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differential Equations, 46:5 (2010), 660–666 | DOI | MR | Zbl
[12] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, Journal of Computational Physics, 280 (2015), 424–438 | DOI | MR | Zbl
[13] M. Kh. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann?Liouville fractional derivative”, Differential Equations, 54:6 (2018), 758–774 | DOI | DOI | MR | Zbl
[14] C. M. Chen, F. Liu, V. Anh, I. Turner, “Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equations”, SIAM Journal on Scientific Computing, 32:4 (2010), 1740–1760 | DOI | MR | Zbl
[15] R. Du, W. R. Cao, Z. Z. Sun, “A compact difference scheme for the fractional diffusion-wave equation”, Applied Mathematical Modelling, 34:10 (2010), 2998–3007 | DOI | MR | Zbl
[16] G. H. Gao, Z. Z. Sun, “A compact finite difference scheme for the fractional sub-diffusion equations”, Journal of Computational Physics, 230:3 (2011), 586–595 | DOI | MR | Zbl
[17] Y. N. Zhang, Z. Z. Sun, H. W. Wu, “Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation”, SIAM Journal on Numerical Analysis, 49:6 (2011), 2302–2322 | DOI | MR | Zbl
[18] Y. Lin, C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation”, Journal of Computational Physics, 225:2 (2007), 1533–1552 | DOI | MR | Zbl
[19] Y. Lin, X. Li, C. Xu, “Finite difference/spectral approximations for the fractional cable equation”, Mathematics of Computation, 80:3 (2011), 1369–1396 | DOI | MR | Zbl
[20] X. Li, C. Xu, “A space-time spectral method for the time fractional diffusion equation”, SIAM Journal on Numerical Analysis, 47:3 (2009), 2108–2131 | DOI | MR | Zbl
[21] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21:2 (1963), 155–160 | DOI | MR
[22] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR
[23] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Soviet Mathematics. Doklady, 10 (1969), 398–400 | MR | Zbl
[24] A. I. Kozhanov, “On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation”, Differential Equations, 40:6 (2004), 815–826 | DOI | MR | Zbl
[25] M. Kh. Beshtokov, “Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients”, Computational Mathematics and Mathematical Physics, 56:10 (2016), 1763–1777 | DOI | DOI | MR | Zbl
[26] M. H. Beshtokov, “On a nonlocal boundary value problem for the third order pseudo-parabolic equation”, Computational Mathematics and Modeling, 27:1 (2016), 60–79 | DOI | MR | Zbl
[27] M. Kh. Beshtokov, “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms”, Differential Equations, 54:2 (2018), 250–267 | DOI | DOI | MR | Zbl
[28] V. A. Vodakhova, “A nonlocal problem like Bitsadze–Samarsky problem for a loaded equation with multiple characteristics”, Vestnik Kabardino-Balkarskogo Universiteta. Seriya Matematicheskie Nauki, 2008, no. 5, 26–31 (in Russian)
[29] V. A. Vodakhova, R. G. Tlupova, M. Kh. Shermetova, “Inside boundary value problem for loaded equation of the third order with multiple characteristics”, Uspekhi Sovremennogo Estestvoznaniya, 2015, no. 1, 71–75 (in Russian)
[30] V. A. Vodahova, R. G. Tlupova, F. A. Erzhibova, D. A. Bolova, “A nonlocal boundary value problem for a mixed third-order equation”, Mezhdunarodnyi Zhurnal Prikladnykh i Fundamental?nykh Issledovanii, 2016, no. 4–5, 876–879 (in Russian)
[31] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | MR | Zbl
[32] M. Kh. Beshtokov, “To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative”, Russian Mathematics, 62:10 (2018), 1–14 | DOI | MR | Zbl
[33] A. A. Samarskii, A. V. Gulin, Stability of difference schemes, Nauka, M., 1973