Keywords: control, nonholonomic connection, geometric dynamics, smooth movement, spherical robot.
@article{VUU_2019_29_3_a9,
author = {E. A. Mityushov and N. E. Misyura and S. A. Berestova},
title = {Quaternion model of programmed control over motion of a {Chaplygin} ball},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {408--421},
year = {2019},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a9/}
}
TY - JOUR AU - E. A. Mityushov AU - N. E. Misyura AU - S. A. Berestova TI - Quaternion model of programmed control over motion of a Chaplygin ball JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 408 EP - 421 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a9/ LA - ru ID - VUU_2019_29_3_a9 ER -
%0 Journal Article %A E. A. Mityushov %A N. E. Misyura %A S. A. Berestova %T Quaternion model of programmed control over motion of a Chaplygin ball %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 408-421 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a9/ %G ru %F VUU_2019_29_3_a9
E. A. Mityushov; N. E. Misyura; S. A. Berestova. Quaternion model of programmed control over motion of a Chaplygin ball. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 408-421. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a9/
[1] S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Nelin. Dinam., 8:4 (2012), 837–852 (in Russian) | DOI
[2] A. V. Borisov, A. A. Kilin, I. S. Mamaev, How to control the Chaplygin sphere using rotors, eds. A. V. Borisov, I. S. Mamaev, Yu. L. Karavaev, Institute of Computer Science, M.–Izhevsk, 2013, 131–168 (in Russian)
[3] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, Regular and Chaotic Dynamics, Izhevsk, 2001, 384 pp. | MR
[4] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin sphere using rotors”, Nelin. Dinam., 8:2 (2012), 289–307 (in Russian) | DOI | MR
[5] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin ball using rotors, II”, Nelin. Dinam., 9:1 (2013), 59–76 (in Russian) | DOI
[6] Yu. F. Golubev, “Quaternion algebra in rigid body kinematics”, Keldysh Institute Preprints, 2013, 039, 23 pp. (in Russian)
[7] A. P. Mashtakov, Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Sbornik: Mathematics, 202:9 (2011), 1347–1371 | DOI | DOI | MR | Zbl
[8] V. E. Pavlovskii, G. P. Terekhov, “Control of the mobile spherical information robot with three orthogonal flywheels”, Spetstekhnika i Svyaz', 2012, no. 3, 19–24 (in Russian)
[9] G. P. Terekhov, “Control of the ball with three wheels on orthogonal axes”, Modern mechatronics, Collection of scientific papers of the All-Russian Scientific School (Orekhovo–Zuyevo, 2011), 126–130 (in Russian)
[10] G. P. Terekhov, V. E. Pavlovsky, “Control of the spherical robot by means of fly-wheels”, Keldysh Institute Preprints, 2017, 016, 31 pp. (in Russian) | DOI
[11] S. A. Chaplygin, “On a ball's rolling on a horizontal plane”, Mat. Sb., 24:1 (1903), 139–168 (in Russian)
[12] Y. Furuse, T. Hirano, M. Ishikawa, “Dynamical analysis of spherical mobile robot utilizing off-centered internal mass distribution”, IFAC-PapersOnLine, 48:13 (2015), 176–181 | DOI
[13] S. Gajbhiye, R. N. Banavar, Geometric approach to tracking and stabilization for a spherical robot actuated by internal rotors, 2015, arXiv: 1511.00428v2 [cs.SY]
[14] S. Gajbhiye, R. N. Banavar, “Geometric tracking control for a nonholonomic system: a spherical robot”, IFAC-PapersOnLine, 49:18 (2016), 820–825 | DOI
[15] M. Ishikawa, R. Kitayoshi, T. Sugie, “Volvot: A spherical mobile robot with eccentric twin rotors”, 2011 IEEE International Conference on Robotics and Biomimetics (2011), 1462–1467 | DOI
[16] V. A. Joshi, R. N. Banavar, “Motion analysis of a spherical mobile robot”, Robotica, 27:3 (2009), 343–353 | DOI
[17] V. A. Joshi, R. N. Banavar, R. Hippalgaonkar, “Design and analysis of a spherical mobile robot”, Mechanism and Machine Theory, 45:2 (2010), 130–136 | DOI | Zbl
[18] A. A. Kilin, “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regular and Chaotic Dynamics, 6:3 (2001), 291–306 | DOI | MR | Zbl
[19] A. A. Kilin, E. N. Pivovarova, “Chaplygin top with a periodic gyrostatic moment”, Russian Journal of Mathematical Physics, 25:4 (2018), 509–524 | DOI | MR | Zbl
[20] A. A. Kilin, E. N. Pivovarova, T. B. Ivanova, “Spherical robot of combined type: dynamics and control”, Regular and Chaotic Dynamics, 20:6 (2015), 716–728 | DOI | MR | Zbl
[21] T. W. U. Madhushani, D. H. S. Maithripala, J. V. Wijayakulasooriya, J. M. Berg, “Semi-globally exponential trajectory tracking for a class of spherical robots”, Automatica, 85 (2017), 327–338 | DOI | MR | Zbl
[22] A. Morinaga, M. Svinin, M. Yamamoto, “A motion planning strategy for a spherical rolling robot driven by two internal rotors”, IEEE Transactions on Robotics, 30:4 (2014), 993–1002 | DOI
[23] V. Muralidharan, A. D. Mahindrakar, “Geometric controllability and stabilization of spherical robot dynamics”, IEEE Transactions on Automatic Control, 60:10 (2015), 2762–2767 | DOI | MR | Zbl
[24] T. Ohsawa, “Geometric kinematic control of a spherical rolling robot”, Journal of Nonlinear Science, 2019, 1–25 | DOI
[25] T. Otani, T. Urakubo, S. Maekawa, H. Tamaki, Y. Tada, “Position and attitude control of a spherical rolling robot equipped with a gyro”, 9th IEEE International Workshop on Advanced Motion Control, 2006, 416–421 | DOI
[26] M. Svinin, Sh. Hosoe, “Motion planning algorithms for a rolling sphere with limited contact area”, IEEE Transactions on Robotics, 24:3 (2008), 612–625 | DOI
[27] M. Svinin, A. Morinaga, M. Yamamoto, “An analysis of the motion planning problem for a spherical rolling robot driven by internal rotors”, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), 414–419 | DOI
[28] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a class of spherical rolling robots”, 2012 IEEE International Conference on Robotics and Automation (2012), 3226–3231 | DOI
[29] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regular and Chaotic Dynamics., 18:1–2 (2013), 126–143 | DOI | MR | Zbl
[30] Y. Sugiyama, S. Hirai, “Crawling and jumping by a deformable robot”, Experimental Robotics IX, Springer Tracts in Advanced Robotics, 21, eds. M. H. Ang, O. Khatib, Springer, Berlin, 2006, 281–291 | DOI
[31] Y. Tao, S. Hanxu, J. Qingxuan, Zh. Wei, “Path following control of a spherical robot rolling on an inclined plane”, Sensors and Transducers, 21 (2013), 42–47
[32] Movement of the ball with three internal flywheel engines in a straight line, Mathematical Modeling in UrFU
[33] Movement of the ball with three internal engines around the circle, Mathematical Modeling in UrFU
[34] Movement of the ball with three internal engines on the trajectory of “slalom”, Mathematical Modeling in UrFU
[35] Movement of the ball with three internal engines along the clothoid, Mathematical Modeling in UrFU
[36] Movement of the ball with three internal engines along the astroid, Mathematical Modeling in UrFU
[37] Animation of a ball moving on a plane without slipping