Theoretical investigation of conditions for the appearance of high-speed bufting
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 382-395
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerically, the phenomenon of the appearance of high-speed bufting is investigated for the case of a transonic flow past the NACA0012 airfoil. A mathematical model based on high-order approximation algorithms is formulated, which makes it possible to calculate nonstationary separated flows. The model is based on the integration of quasi-hydrodynamic equations. A parametric investigation of high-velocity viscous gas flow past an airfoil as a function of the angle of attack is carried out. Both instantaneous and averaged flow patterns are analyzed. The distributions of the pulsation characteristics of flows are obtained at different angles of attack. Regularities in the onset of detachment of the boundary layer are revealed, and the effect of shock waves on the nature of the flow near the surface of the airfoil is determined. The critical angle of attack at which high-speed bufting begins is determined.
Keywords: high-speed buffeting, shock waves, direct numerical simulation, high-order approximation.
Mots-clés : quasi-hydrodynamic equations
@article{VUU_2019_29_3_a7,
     author = {A. M. Lipanov and S. A. Karskanov and S. L. Chernyshev and I. I. Lipatov},
     title = {Theoretical investigation of conditions for the appearance of high-speed bufting},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {382--395},
     year = {2019},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a7/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - S. A. Karskanov
AU  - S. L. Chernyshev
AU  - I. I. Lipatov
TI  - Theoretical investigation of conditions for the appearance of high-speed bufting
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 382
EP  - 395
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a7/
LA  - ru
ID  - VUU_2019_29_3_a7
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A S. A. Karskanov
%A S. L. Chernyshev
%A I. I. Lipatov
%T Theoretical investigation of conditions for the appearance of high-speed bufting
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 382-395
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a7/
%G ru
%F VUU_2019_29_3_a7
A. M. Lipanov; S. A. Karskanov; S. L. Chernyshev; I. I. Lipatov. Theoretical investigation of conditions for the appearance of high-speed bufting. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a7/

[1] M. F. Garifullin, Buffeting, Fizmatlit, M., 2010

[2] T. V. Fam, Numerical simulation of the occurrence processes of buifting in the transonic flow and methods of controlling the bufting, Cand. Sci. (Phys. Math.) Dissertation, Zhukovsky, 2014, 123 pp. (In Russian)

[3] T. G. Elizarova, B. N. Chetverushkin, “Kinetic algorithms for calculating gas dynamic flows”, USSR Computational Mathematics and Mathematical Physics, 25:5 (1985), 164–169 | DOI | MR | MR

[4] B. N. Chetverushkin, Kinetically consistent schemes in gas dynamics: a new viscous gas model, algorithms, parallel implementation, applications, Moscow State University, M., 1999

[5] B. N. Chetverushkin, “Kinetic schemes and high-performance multiprocessing calculations in gas dynamics”, Computational Technologies, 7:6 (2002), 65–89 | MR | Zbl

[6] R. Temam, Navier–Stokes equations: Theory and numerical analysis, North-Holland, Amsterdam, 1984 | MR | Zbl

[7] I. G. Rusyak, A. M. Lipanov, V. Ushakov, Physical basis and gas dynamics of burning of gunpowders in artillery systems, Institute of Computer Science, M.–Izhevsk, 2016 | MR

[8] A. V. Aliyev, Internal ballistics of RDTT, Mashinostroenie, M., 2007

[9] S. Gottlieb, C. W. Shu, “Total variation diminishing Runge–Kutta schemes”, Mathematics of computation, 67:221 (1998), 73–85 | MR | Zbl

[10] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially nonoscillatory schemes”, J. Comp. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[11] A. Lipanov, Theoretical mechanics of newtonian media, Nauka, M., 2011

[12] L. V. Dorodnicyn, “Nonreflecting boundary conditions and numerical simulation of external flows”, Computational Mathematics and Mathematical Physics, 51:1 (2011), 143–159 | DOI | MR | Zbl

[13] J. B. McDevitt, A. F. Okuno, Static and dynamic pressure measurements on a NACA0012 airfoil in the Ames high Reynolds number facility, NASA TP-2485, NASA Ames, CA, USA, 1985

[14] M. Braza, “NACA0012 with Aileron”, Unsteady effects of shock wave induced separation, 101–131, Springer, Berlin, 2011 | DOI

[15] I. I. Lipatov, T. V. Fam, A. A. Prikhod'ko, “Numerical simulations of bufting appearence”, Trudy Moskovskogo Fiziko-Tekhnicheskogo Instituta, 6:2 (2014), 122–132 (in Russian)

[16] N. E. Kochin, I. A. Kibel', N. V. Roze, Theoretical hydromechanics, Nauka, M., 1968