The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 341-350
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the article a numerical technique based on the finite difference method is proposed for the approximate solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear that a bridge designed with two support points at each end point leads to a standard two-point local boundary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary value condition. At the same time if non-local boundary conditions can be set up near each endpoint of a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters variation on the convergence of the proposed method is analyzed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
second-order boundary value problem, finite difference method, integral boundary conditions, parameters and convergence.
                    
                    
                    
                  
                
                
                @article{VUU_2019_29_3_a4,
     author = {P. K. Pandey},
     title = {The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/}
}
                      
                      
                    TY - JOUR AU - P. K. Pandey TI - The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 341 EP - 350 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/ LA - en ID - VUU_2019_29_3_a4 ER -
%0 Journal Article %A P. K. Pandey %T The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 341-350 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/ %G en %F VUU_2019_29_3_a4
P. K. Pandey. The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/
