@article{VUU_2019_29_3_a4,
author = {P. K. Pandey},
title = {The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {341--350},
year = {2019},
volume = {29},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/}
}
TY - JOUR AU - P. K. Pandey TI - The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 341 EP - 350 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/ LA - en ID - VUU_2019_29_3_a4 ER -
%0 Journal Article %A P. K. Pandey %T The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 341-350 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/ %G en %F VUU_2019_29_3_a4
P. K. Pandey. The numerical solution of a nonlocal boundary value problem for an ordinary second-order differential equation by the finite difference method. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a4/
[1] Y. Zou, Q. Hu, R. Zhang, “On numerical studies of multi-point boundary value problem and its fold bifurcation”, Applied Mathematics and Computation, 185:1 (2007), 527–537 | DOI | MR | Zbl
[2] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 21:2 (1963), 155–160 https://www.jstor.org/stable/43635292 | MR
[3] N. I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differentsial'nye Uravneniya, 13:2 (1977), 294–304 (in Russian) | MR | Zbl
[4] R. Y. Chegis, “Numerical solution of the heat conduction problem with an integral condition”, Litovskii Matematicheskii Sbornik, 24:4 (1984), 209–215 (in Russian) | MR | Zbl
[5] R. A. Khan, “The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions”, Electronic Journal of Qualitative Theory of Differential Equations, 2003, no. 19, 1–15 | DOI | MR
[6] M. Feng, D. Ji, W. Ge, “Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces”, Journal of Computational and Applied Mathematics, 222:2 (2008), 351–363 | DOI | MR | Zbl
[7] A. Boucherif, “Second-order boundary value problems with integral boundary conditions”, Nonlinear Analysis: Theory, Methods Applications, 70:1 (2009), 364–371 | DOI | MR | Zbl
[8] L. Liu, X. Hao, Y. Wu, “Positive solutions for singular second order differential equations with integral boundary conditions”, Mathematical and Computer Modelling, 57:3–4 (2013), 836–847 | DOI | MR | Zbl
[9] C. P. Gupta, “A generalized multi-point boundary value problem for second order ordinary differential equations”, Applied Mathematics and Computation, 89:1–3 (1998), 133–146 | DOI | MR | Zbl
[10] Y. Guo, W. Shan, W. Ge, “Positive solutions for second-order m-point boundary value problems”, Journal of Computational and Applied Mathematics, 151:2 (2003), 415–424 | DOI | MR | Zbl
[11] L. Kong, Q. Kong, “Multi-point boundary value problems of second-order differential equations (I)”, Nonlinear Analysis: Theory, Methods Applications, 58:7–8 (2004), 909–931 | DOI | MR | Zbl
[12] R. Ma, “Positive solutions for nonhomogeneous $m$-point boundary value problems”, Computers Mathematics with Applications, 47:4–5 (2004), 689–698 | DOI | MR | Zbl
[13] P. K. Pandey, “A finite difference method for the numerical solving general third order boundary-value problem with an internal boundary condition”, Russian Mathematics, 61:12 (2017), 29–38 | DOI | MR | Zbl
[14] C. E. Froberg, Introduction to numerical analysis, 2nd ed, Addison-Wesley, New York, 1969 | MR
[15] M. K. Jain, S. R.K. Iyenger, R. K. Jain, Numerical methods for scientific and engineering computation (2/e), Wiley Eastern Limited, New Delhi, 1987 | MR