Mots-clés : singular perturbation
@article{VUU_2019_29_3_a3,
author = {K. G. Kozhobekov and D. A. Tursunov},
title = {Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {332--340},
year = {2019},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a3/}
}
TY - JOUR AU - K. G. Kozhobekov AU - D. A. Tursunov TI - Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 332 EP - 340 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a3/ LA - ru ID - VUU_2019_29_3_a3 ER -
%0 Journal Article %A K. G. Kozhobekov %A D. A. Tursunov %T Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 332-340 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a3/ %G ru %F VUU_2019_29_3_a3
K. G. Kozhobekov; D. A. Tursunov. Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 332-340. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a3/
[1] A. M. Il'in, A. R. Danilin, Asymptotic methods in analysis, Fizmatlit, M., 2009, 248 pp.
[2] S. A. Lomov, Introduction to the general theory of singular perturbations, AMS, Providence, Rhode Island, 1992 | MR | Zbl
[3] A. Fruchard, R. Schäfke, Composite asymptotic expansions, Springer-Verlag, Berlin–Heidelberg, 2013 | DOI | MR | Zbl
[4] A. H. Nayfeh, Introduction to perturbation techniques, New York, 1993 | MR
[5] V. N. Bobochko, “An unstable differential turning point in the theory of singular perturbations”, Russian Mathematics, 49:4 (2005), 6–14 | MR | Zbl
[6] K. Alymkulov, A. A. Khalmatov, “A boundary function method for solving the model lighthill equation with a regular singular point”, Mathematical Notes, 92:5-6 (2012), 751–755 | DOI | MR | Zbl
[7] K. Alymkulov, T. D. Asylbekov, S. F. Dolbeeva, “Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations”, Mathematical Notes, 94:3–4 (2013), 451–454 | DOI | DOI | MR | Zbl
[8] Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, Elsevier, 1975 | MR | Zbl
[9] V. P. Yakovets, O. V. Chornenka (Golovchenko), “The construction of asymptotic solutions of a singularly perturbed linear system of differential equations with an irregular singular point in the case where the main matrix has multiple spectrum”, Neliniini kolyvannya, 11:1 (2008), 128–144 (in Ukrainian) | MR | Zbl
[10] I. V. Vyugin, “Riemann–Hilbert problem for scalar Fuchsian equations and related problems”, Russian Mathematical Surveys, 66:1 (2011), 35–62 | DOI | MR | Zbl
[11] D. V. Korikov, B. A. Plamenevskii, “Asymptotics of solutions of the stationary and nonstationary Maxwell systems in a domain with small cavities”, St. Petersburg Math. J., 28:4 (2017), 507–554 | DOI | MR | Zbl
[12] E. B. Kuznetsov, S. S. Leonov, “Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points”, Computational Mathematics and Mathematical Physics, 57:6 (2017), 931–952 | DOI | DOI | MR | Zbl
[13] K. Alymkulov, D. A. Tursunov, “A method for constructing asymptotic expansions of bisingularly perturbed problems”, Russian Mathematics, 60:12 (2016), 1–8 | DOI | MR | Zbl
[14] D. A. Tursunov, “The asymptotic solution of the three-band bisingularly problem”, Lobachevskii Journal of Mathematics, 38:3 (2017), 542–546 | DOI | MR | Zbl
[15] D. A. Tursunov, “Asymptotic solution of linear bisingular problems with additional boundary layer”, Russian Mathematics, 62:3 (2018), 60–67 | DOI | MR | Zbl
[16] D. A. Tursunov, U. Z. Erkebaev, E. A. Tursunov, “Asymptotics of the Dirichlet problem solution for a ring with quadratic growths on the boundaries”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2016, no. 2(48), 73–81 (in Russian) | Zbl
[17] D. A. Tursunov, U. Z. Erkebaev, “Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:4 (2015), 517–525 (in Russian) | DOI | Zbl
[18] D. A. Tursunov, “Asymptotics of the Cauchy problem solution in the case of instability of a stationary point in the plane of “rapid motions””, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, no. 54, 46–57 (in Russian) | DOI