On tightness and pseudocharacter of compact $T_1$-spaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 312-318
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the relationship between the pseudocharacter $\psi(X)$ and the tightness $t(X)$ of compact $T_1$-spaces $X$. We prove that $t(X)\leqslant\psi(X)$ for self-adjoined $T_1$-spaces, i.e., the spaces where a subset is closed if and only if it is compact. We also show that in general for compact $T_1$-spaces there is no relationship between these cardinal invariants. We give an example of a compact $T_1$-space such that the tightness of this space is uncountable, but its pseudocharacter is countable. Another example shows the space $X$ whose tightness is countable, but its pseudocharacter is uncountable.
Keywords: $T_1$-space, compact, tightness, pseudocharacter.
@article{VUU_2019_29_3_a1,
     author = {A. A. Gryzlov and R. A. Golovastov},
     title = {On tightness and pseudocharacter of compact $T_1$-spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {312--318},
     year = {2019},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a1/}
}
TY  - JOUR
AU  - A. A. Gryzlov
AU  - R. A. Golovastov
TI  - On tightness and pseudocharacter of compact $T_1$-spaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 312
EP  - 318
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a1/
LA  - ru
ID  - VUU_2019_29_3_a1
ER  - 
%0 Journal Article
%A A. A. Gryzlov
%A R. A. Golovastov
%T On tightness and pseudocharacter of compact $T_1$-spaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 312-318
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a1/
%G ru
%F VUU_2019_29_3_a1
A. A. Gryzlov; R. A. Golovastov. On tightness and pseudocharacter of compact $T_1$-spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 312-318. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a1/

[1] P. S. Aleksandrov, P. S. Uryson, A memoir on compact topological spaces, Nauka, M., 1971, 144 pp.

[2] P. S. Aleksandrov, Introduction to set theory and general topology, Nauka, M., 1977, 368 pp.

[3] R. Engelking, General topology, PWN– Polish Scientific Publishers, Warszawa, 1977, 626 pp. | MR | MR | Zbl

[4] Arkhangelskii A. V., “Mappings and spaces”, Russian Mathematical Surveys, 21:4 (1966), 115–162 | DOI | MR

[5] A. V. Arkhangelskii, “Structure and classification of topological spaces and cardinal invariants”, Russian Mathematical Surveys, 1978, no. 6, 33–96 | DOI | MR

[6] A. A. Gryzlov, “Two theorems on the cardinality of topological spaces”, Soviet Math. Dokl., 21 (1980), 506–509 | MR | Zbl

[7] M. E. Voronov, “On compact $T_1$-spaces”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 3, 20–27 (in Russian) | DOI

[8] A. A. Gryzlov, K. N. Tsigvintseva, “On convergent sequences and properties of spaces”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:3 (2018), 277–283 (in Russian) | DOI | MR | Zbl

[9] A. A. Gryzlov, “On the properties of subsets of Tychonoff products”, Topology and its Applications, 201 (2016), 13–17 | DOI | MR | Zbl

[10] A. A. Gryzlov, “On dense subsets of Tychonoff products of $T_1$-spaces”, Topology and its Applications, 248 (2018), 164–175 | DOI | MR | Zbl

[11] I. S. Gotchev, “Generalizations of two cardinal inequalities of Hajnal and Juhász”, Topology and its Applications, 221 (2017), 425–431 | DOI | MR | Zbl

[12] Z. Szentmiklóssy, “First countable almost discretely Lindel{ö}f $T_3$ spaces have cardinality at most continuum”, Topology and its Applications, 241 (2018), 145–149 | DOI | MR | Zbl

[13] N. A. Carlson, J. R. Porter, “On the cardinality of Hausdorff spaces and H-closed spaces”, Topology and its Applications, 241 (2018), 377–395 | DOI | MR | Zbl

[14] M. Bonanzinga, D. Stavrova, P. Staynova, “Separation and cardinality-Some new results and old questions”, Topology and its Applications, 221 (2017), 556–569 | DOI | MR | Zbl