On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 301-311
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system
\begin{equation}
x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k},
\tag{1}
\end{equation}
in a small neighborhood of the Lyapunov spectrum of the free system
\begin{equation}
x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},
\tag{2}
\end{equation}
by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$
satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum.
This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system
\begin{equation}
x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}.
\tag{3}
\end{equation}
We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum
of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum
of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
Keywords:
linear discrete-time system, Lyapunov exponents, сontrollability, stabilizability.
@article{VUU_2019_29_3_a0,
author = {I. N. Banshchikova and E. K. Makarov and S. N. Popova},
title = {On the conditions of proportional local assignability of the {Lyapunov} spectrum of a linear discrete-time system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {301--311},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/}
}
TY - JOUR AU - I. N. Banshchikova AU - E. K. Makarov AU - S. N. Popova TI - On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 301 EP - 311 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/ LA - ru ID - VUU_2019_29_3_a0 ER -
%0 Journal Article %A I. N. Banshchikova %A E. K. Makarov %A S. N. Popova %T On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 301-311 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/ %G ru %F VUU_2019_29_3_a0
I. N. Banshchikova; E. K. Makarov; S. N. Popova. On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 301-311. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/