On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 301-311

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system \begin{equation} x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \tag{1} \end{equation} in a small neighborhood of the Lyapunov spectrum of the free system \begin{equation} x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}, \tag{2} \end{equation} by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system \begin{equation} x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \tag{3} \end{equation} We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
Keywords: linear discrete-time system, Lyapunov exponents, сontrollability, stabilizability.
@article{VUU_2019_29_3_a0,
     author = {I. N. Banshchikova and E. K. Makarov and S. N. Popova},
     title = {On the conditions of proportional local assignability of the {Lyapunov} spectrum of a linear discrete-time system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/}
}
TY  - JOUR
AU  - I. N. Banshchikova
AU  - E. K. Makarov
AU  - S. N. Popova
TI  - On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 301
EP  - 311
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/
LA  - ru
ID  - VUU_2019_29_3_a0
ER  - 
%0 Journal Article
%A I. N. Banshchikova
%A E. K. Makarov
%A S. N. Popova
%T On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 301-311
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/
%G ru
%F VUU_2019_29_3_a0
I. N. Banshchikova; E. K. Makarov; S. N. Popova. On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 3, pp. 301-311. http://geodesic.mathdoc.fr/item/VUU_2019_29_3_a0/