Mots-clés : satellite
@article{VUU_2019_29_2_a9,
author = {O. V. Kholostova},
title = {On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom {Hamiltonian} system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {275--294},
year = {2019},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a9/}
}
TY - JOUR AU - O. V. Kholostova TI - On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 275 EP - 294 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a9/ LA - ru ID - VUU_2019_29_2_a9 ER -
%0 Journal Article %A O. V. Kholostova %T On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 275-294 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a9/ %G ru %F VUU_2019_29_2_a9
O. V. Kholostova. On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 275-294. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a9/
[1] Kunitsyn A. L., “The stability in the critical case of pure imaginary roots, with internal resonance”, Differ. Uravn., 7:9 (1971), 1704–1706 (in Russian)
[2] Khazina G. G., “Certain stability questions in the presence of resonances”, Journal of Applied Mathematics and Mechanics, 38:1 (1974), 43–51 | DOI | MR | Zbl
[3] Kunitsyn A. L., Medvedev S. V., “On stability in the presence of several resonances”, Journal of Applied Mathematics and Mechanics, 41:3 (1977), 419–426 | DOI | MR
[4] Khazin L. G., “Interaction of third-order resonances in problems of the stability of hamiltonian systems”, Journal of Applied Mathematics and Mechanics, 48:3 (1984), 356–360 | DOI | MR | Zbl
[5] Markeev A. P., “On a multiple resonance in linear Hamiltonian systems”, Doklady Physics, 50:5 (2005), 278–282 | DOI | MR
[6] Markeyev A. P., “Multiple parametric resonance in Hamilton systems”, Journal of Applied Mathematics and Mechanics, 70:2 (2006), 176–194 | DOI | MR | Zbl
[7] Markeev A. P., Linear Hamiltonian systems and some problems of stability of satellite motion relative to the center of mass, Institute of Computer Science, M.–Izhevsk, 2009
[8] Markeev A. P., “On one special case of parametric resonance in problems of celestial mechanics”, Astronomy Letters, 31:5 (2005), 350–356 | DOI
[9] Markeev A. P., “Multiple resonance in one problem of the stability of the motion of a satellite relative to the center of mass”, Astronomy Letters, 31:9 (2005), 627–633 | DOI | Zbl
[10] Kholostova O. V., “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Russian Journal of Nonlinear Dynamics, 13:4 (2017), 477–504 (in Russian) | DOI | Zbl
[11] Kholostova O. V., “On periodic motions of a near-autonomous system in the cases of a double parametric resonance”, Prikladnaya Matematika i Mekhanika, 83:2 (2019), 175–201 (in Russian) | DOI
[12] Kholostova O. V., “Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances”, Russian Journal of Nonlinear Dynamics, 8:2 (2012), 267–288 (in Russian) | DOI
[13] Kholostova O. V., “The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system”, Russian Journal of Nonlinear Dynamics, 11:4 (2015), 671–683 (in Russian) | DOI
[14] Kholostova O., “Stability of triangular libration points in a planar restricted elliptic three body problem in cases of double resonances”, International Journal of Non-Linear Mechanics, 73 (2015), 64–68 | DOI
[15] Kholostova O. V., Problems of dynamics of rigid bodies with vibrating suspension, Institute of Computer Science, M.–Izhevsk, 2016
[16] Safonov A. I., Kholostova O. V., “On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 418–438 (in Russian) | DOI | Zbl
[17] Kholostova O. V., Safonov A. I., “On equilibrium positions bifurcations of Hamiltonian system in cases of double combined third order resonance”, Trudy Moskovskogo Aviatsionnogo Instituta, 2018, no. 100 (in Russian)
[18] Safonov A. I., Kholostova O. V., “On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:3 (2018), 373–394 (in Russian) | DOI | Zbl
[19] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978
[20] Malkin I. G., Theory of stability of motion, Nauka, M., 1966
[21] Glimm J., “Formal stability of Hamiltonian systems”, Communications of Pure and Applied Mathematics, 17:4 (1964), 509–526 | MR | Zbl
[22] Markeev A. P., “On the rotational motion of a dynamically symmetric satellite on elliptical orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (in Russian)
[23] Kholostova O. V., “A specific case of stability of cylindrical precession of a satellite”, Cosmic Research, 46:3, 264–272 | DOI
[24] Markeev A. P., “Stability of planar rotations of a satellite in a circular orbit”, Mechanics of Solids, 41:4 (2006), 46–63