@article{VUU_2019_29_2_a8,
author = {M. V. Norkin},
title = {Cavitational braking of a cylinder with a variable radius in a fluid after impact},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {261--274},
year = {2019},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a8/}
}
TY - JOUR AU - M. V. Norkin TI - Cavitational braking of a cylinder with a variable radius in a fluid after impact JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 261 EP - 274 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a8/ LA - ru ID - VUU_2019_29_2_a8 ER -
%0 Journal Article %A M. V. Norkin %T Cavitational braking of a cylinder with a variable radius in a fluid after impact %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2019 %P 261-274 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a8/ %G ru %F VUU_2019_29_2_a8
M. V. Norkin. Cavitational braking of a cylinder with a variable radius in a fluid after impact. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a8/
[1] Sedov L. I., Two-dimensional problems in hydrodynamics and aerodynamics, Interscience Publications, New York, 1965 | MR | Zbl
[2] Norkin M. V., “Cavitation deceleration of a circular cylinder in a liquid after impact”, Journal of Applied Mechanics and Technical Physics, 58:1 (2017), 89–94 | DOI | DOI | MR | Zbl
[3] Yudovich V. I., “Unique solvability of the problem of impact with separation of a rigid body on a nonhomogeneous fluid”, Vladikavkaz. Mat. Zh., 7:3 (2005), 79–91 (in Russian) | Zbl
[4] Norkin M. V., “Cavitational braking of a rigid body in a perturbed liquid”, Russian Journal of Nonlinear Dynamics, 13:2 (2017), 181–193 (in Russian) | DOI | Zbl
[5] Norkin M. V., “Free cavitational deceleration of a circular cylinder in a liquid after impact”, Journal of Applied and Industrial Mathematics, 12:3 (2018), 510–518 | DOI | DOI | MR | Zbl
[6] Norkin M. V., “Mathematical model of a post-impact cavitational deceleration of a torus in a liquid”, Mathematical Models and Computer Simulations, 11:2 (2019), 301–308 | DOI | DOI | MR | Zbl
[7] Norkin M., Korobkin A., “The motion of the free-surface separation point during the initial stage of horizontal impulsive displacement of a floating circular cylinder”, Journal of Engineering Mathematics, 70:1–3 (2011), 239–254 | DOI | MR | Zbl
[8] Virchenko N. A., Dual (triple) integral equations, Vyshcha shkola, Kiev, 1989
[9] Mandal B. N., Mandal N., Advances in dual integral equations, Chapman Hall/CRC Press, Boca Raton, 1999 | MR | Zbl
[10] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953
[11] Zhukov M. Yu., Shiryaeva E. V., Using the FreeFem++ finite element package for hydrodynamics, electrophoresis and biology problems, Southern Federal University, Rostov-on-Don, 2008
[12] Dvorak A. V., Teselkin D. A., “Numerical solution of two-dimensional problems of the pulse motion of floating bodies”, USSR Computational Mathematics and Mathematical Physics, 26:1 (1986), 91–95 | DOI | Zbl
[13] Rvachev V. L., Protsenko V. S., Contact problems of elasticity theory for nonclassical domains, Naukova dumka, Kiev, 1977
[14] Vabishchevich P. N., Numerical methods for solving problems with a free boundary, Moscow State University, M., 1987