On periodic motions of a rigid body suspended on a thread in a uniform gravity field
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The planar motion of a rigid body in a uniform gravity field is considered. The body is suspended on a weightless inextensible thread. The thread is assumed to remain taut during the motion of the body. Nonlinear periodic oscillations of the body in the vicinity of its stable equilibrium position on the vertical are studied. These motions are generated by small (linear) normal body vibrations. The question of the existence of such motions is solved with the Lyapunov theorem on a holomorphic integral. An algorithm for constructing these motions using the canonical transformation method is proposed. The corresponding solutions are represented in the form of series in a small parameter characterizing the amplitude of the generating normal oscillations. A rigorous solution is given to the nonlinear problem of orbital stability of the motions obtained. Possible regions of parametric resonance (instability regions) are indicated. The third and fourth order resonance cases, as well as a nonresonant case, are considered. The study is based on the Lyapunov and Poincaré methods and KAM-theory.
Keywords: periodic motions, Hamiltonian system, resonance, stability.
@article{VUU_2019_29_2_a7,
     author = {A. P. Markeev},
     title = {On periodic motions of a rigid body suspended on a thread in a uniform gravity field},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {245--260},
     year = {2019},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a7/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On periodic motions of a rigid body suspended on a thread in a uniform gravity field
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 245
EP  - 260
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a7/
LA  - ru
ID  - VUU_2019_29_2_a7
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On periodic motions of a rigid body suspended on a thread in a uniform gravity field
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 245-260
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a7/
%G ru
%F VUU_2019_29_2_a7
A. P. Markeev. On periodic motions of a rigid body suspended on a thread in a uniform gravity field. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/VUU_2019_29_2_a7/

[1] Malkin I. G., Some problems of the theory of nonlinear oscillations, Gostekhizdat, M., 1956, 491 pp.

[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Springer, Berlin–Heidelberg, 2006 | DOI | MR | Zbl

[3] Mozer J. K., Lectures on Hamiltonian systems, Memoirs of the American Mathematical Society, 81, Courant Inst. Math. Sc., New York, 1968, 60 pp.

[4] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.

[5] Markeev A. P., Linear Hamiltonian systems and some problems on the stability of the motion of the satellite relative to the center of mass, Regular and Chaotic Dynamics, M.–Izhevsk, 2009

[6] Giacaglia G. E. O., Perturbation methods in non-linear systems, Springer, New York, 1972 | DOI | MR | Zbl

[7] Malkin I. G., Theory of stability of motion, Nauka, M., 1966, 530 pp.

[8] Markeyev A. P., “An algorithm for normalizing Hamiltonian systems in the problem of the orbital stability of periodic motions”, Journal of Applied Mathematics and Mechanics, 66:6 (2002), 889–896 | DOI | MR | Zbl

[9] Ishlinky A. Yu., Storozhenko V. A., Temchenko M. E., Rotation of a rigid body on a string and adjacent problems, Nauka, M., 1991, 330 pp.

[10] Ishlinky A. Yu., Storozhenko V. A., Temchenko M. E., “Dynamics of rigid bodies rotating rapidly on a string and related topics (survey)”, International Applied Mechanics, 30:8 (1994), 557–581 | DOI | MR

[11] Mirer S. A., Sarychev V. A., “On stationary motions of a body on a string suspension”, Non-linear mechanics, Transactions, Fizmatlit, M., 2001, 281–322 (in Russian) | Zbl

[12] Ivanov A. P., “On the stability of permanent rotations of a body suspended on a string in the presence of shock interactions”, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1985, no. 6, 47–50 (in Russian)

[13] Markeev A. P., “Stability of a periodic motion of a rod suspended by an ideal thread”, Mechanics of Solids, 42:4 (2007), 497–506 | DOI | MR

[14] Gantmacher F. R., Lectures in analytical mechanics, Mir, M., 1975, 265 pp.

[15] Siegel C. L., Vorlesungen über Himmelsmechanik, Springer, Berlin–Heidelberg, 1956 | MR